Policies
AsDesign and | mplementation Artifacts
For Non Functional Requirements

by

Feng Chen

A thesis submitted to the Faculty of Graduate Studies
in partial fulfillment of the requirements

for the degree of

Master of Engineering

Ottawa- Carleton Institute for Electrical and Computer Engineering
Department of Systems and Computer Engineering
Faculty of Engineering
Carleton University
Ottawa, Ontario, Canada, K1S 5B6

September 8, 2002

O 2002, Feng Chen

The undersigned recommend to the Faculty of Graduate Studies
and Research acceptance of the thesis

Policies
AsDesign And Implementation Artifacts
For Non Functional Requirements.

Submitted by Feng Chen
in partial fulfillment of the requirements
for the degree of Masters of Engineering

Chair, Department of Systems and Computer Engineering

Thesis Supervisor

Carleton University

September 8, 2002

ABSTRACT

The implementation of Non Functiona requirements (NFRS) often results in scattered
code in the whole system, because there are no modular design and implementation
artifacts for NFRs. This thesis proposes to use policies as the design and implementation
artifacts for NFRs. Relevant policy mechanisms are surveyed and characterized through a
list of attributes. Two policy mechanisms PEOCL and Aspect are proposed to be used for
designing and implementing NFRs. PEOCL is extended from Object Constraint
Language and is used to represent design-level policies for NFRs. PEOCL policies are
further mapped to aspects in AspectJ at the code level. An abstract aspect library is aso
developed to support this methodology. This methodology is validated and illustrated
through a case study. This approach realizes modular design and implementation for
NFRs and the decoupling of the design and implementation for NFRs and those for
functional features, thus achieves readability, tracability, non-intrusive adaptation,

evolvability, and reusability.

Keywords:

Non Functional Requirements (NFR), Quality Attributes, Policy, Rule-based system,
Constraint, Advanced separation of Concerns, Aspect-Oriented Programming (AOP),
Reflection, Program Transformation/meta-programming, Software Devel opment

Methodol ogy

ACKNOWLEDGEMENTS

| would like to express my deepest gratitude to my supervisor, Professor Babak
Esfandiari, for his constant guidance, patience, inspiration, advice and encouragement

throughout the research work and the preparation of this thesis.

| would also like to thank my family for their support, understanding and love during my

study and research.

Table of Contents

YN o1 = T SRR iii
ACKNOWIEAGEMENES ...ttt aenne s iv
S O B 18 =S SRS viii
[O)l IF= o] [T TURURTRTT iX
ADDrieviationS AN ACIONYIMScoiiiiiiiiiieie et be e e sre e X
(@ aF=To] = g R I 1 { oo [F ot (T o OSSP 1
I T |/ @ 1 V7 1
1.2 PROBLEM STATEMENT «.eeeeiteeeteeeeeeaeaeeeeeeeeeeeeeeeeeeeeeennnnnaaaaaaesesseeeeeeeeeeennaaaaseeeeees 2
1.3 PROPOSED SOLUTION....iititiesssssrsrereeeeesseessssssssssssssssssssssseesseessessesessssmnansssassssssssssssses 3
1.4 THESIS CONTRIBUTION ..eeetttuueunuuaeesseesssseeeessseesesssssssnsnnnaassssssssssesessesssssnnnaaaaseseeees 5
15 ORGANIZATION OF THE THESIS .eueeuueueeeeeeeeeeeeeeeeeeeeeeeeeeeneeaeaaaaaaeaeeessesaeeeeennaaaeeens 6

Chapter 2 The State Of The Art In Analysis, Design, And I mplementation of NFRs

.. 8

2.1 REQUIREMENT DEFINITION AND ANALYSISFORNFRS.......ccccovirieeenrnesieeeeene 8
2.1.1 Non-Functional Requirement Framework..........ccooveeieienieninnieeniesieese e 8
212 Quality Attributes Taxonomy And Architecture Tradeoff Analysis Method. 11
213 CONCIUSION ...ttt b e s e e e e 13
2.2 DESIGNFORNFRSooitiitiiecse sttt 14
221 Desrable Characteristicsof ADesign For NFRS........cccccocvvvvinnienennienn 14
2.2.2 Object Constraint LAnQUAGE..........cccuereereerieeremrieeiresieseeseesseesseessesssesssesnns 16
2.2.3 Policy Based Management MIB.........cccooieiiieninereseses e 18
224 DESIGN PaLtEINS.......eiiiiiiiieiesiesieeeee et ss sre st e s sreseessesneensens 20
225 CONCIUSION ..ottt 21
2.3 IMPLEMENTATION FORNFRSooiiiiiiiee e 22
231 Dedrable Characteristics of An Implementation For NFRs...........cccccee. 22
2.3.2 Constraint Object-Oriented Programming SYI€.......cccevevvienenieennnenceneens 23
2.3.3 ILOG JRUIES......ccueiiirtirieieeseste sttt 27
234 REF ettt b bt r et s 29
235 EXCEptioN MECNANISIM ..ot 3
236 ASPECHT ...t p e n e nae s 35
237 CONCIUSION ...ttt bbb n s 37

Chapter 3 An ANalysiS Of POlICIES........cocviiiiiiiieeese e 38

3.1 DEFINITIONS OF POLICIESc.ctuiiteuertinieiesteneeies sreeiesseessesseessessesesse s seeneesessessessesses 3
3.1.1 Variousdictionary definitions of theword “ Policy”cccooevvivienieniennnne 39
312 Variousformsof “ POIICIES” 1N SOCIELYccevuereriererieenie e 39
3.1.3 Définition of POliCIES ASTUIEScceiviriieieeseee e 40
3.1.4 Déefinition of policies asrules and eXPreSSiONS........coeveveveresesess seeeseeseens 41
3.15 Définition of a policy as either a goal or a strategy to achieve a goal......... 11
3.1.6 Podliciesas Semantically-Crosscutting and Syntactically-Centralized
CONSLrAINIS OF RUIES........oiiiiieiiieiesie ettt b e b et sneen 41

3.2 ATTRIBUTES OF POLICY MECHANISMS.....c.cotitinieeeienieseenieesiesie s e see e seenesns 43
321 Attributes Of Policy Mechanisms For A Sngle Policy.......ccccvvevveiennnnne 43
3.22 Attributes Of Group Policy MechaniSIms..........cccevvviieeieciine e 53

3.3 POSITIONING OF VARIOUS CONCRETE POLICY MECHANISMS......cceeiiirieriesieeniens 56

B4 CONCLUSION ..ueeiiitiietesesiessestesesesse st sse e ese s sbe st e e st s st este e e seebenae e e e esenbesseneenes 61

Chapter 4 Policies AsArtifacts Of Design And Implementation For NFRs........... 62

4.1 EXTENDING OCL WITH THEUML M ETA MODEL AND THE NFRONTOLOGY 63
411 Why OCL And Why EXtending OCL..........ccoeerinerienienins s 63
41.2 Extending OCL With The NFR ONtology.........ccovvuveiiemiieeniisiesnieesee e 65
413 Extending OCL With The UML Metamodel.............ccooeiininienieniinnneeciens 66
414 PEOCL Syntax ANd SEMANLICS.......coieriireeiesieeee et see e ens 67
415 USAQE Of PEOCL......ccoiiiiiiiirieieisie sttt 70

4.2 MAPPINGNFRSTO PEOCL POLICIEScccviiiiiieiiieniiesieesie e 71

4.3 ASPECTSAND ABSTRACT ASPECT LIBRARY FORNFRS.......ccccoeniiiieeecciee 75
431 VWNAt ArE ASDECES.....eiiiiieieieiee sttt see et sttt st sbe e stesse e e ee e 75
4.32 VWNY ASDECES.....cueiieiiitiitieiesie sttt st sttt st se e tesbesbesse e e e ntesteenenneens 76
433 AGeneric Aspect Library For Common NFR Concerns........cccoccveeveeieeninns 7

4.3.3.1 ENCryption ASPECE......coeieiiriesiesieriesies ettt e seesae e 7
4.3.3.2 TIMING ASPECE .eovieeieieiteeieeee sttt sttt resneenne s 79
4.3.3.3 LOQOING ASPECL......ccuiiuiiiieieiiesiesiieeesie et ste s ee st sbe e nsestesnesneesnens 82

434 Mapping PEOCL POIICIES TO ASPECES....cvieiiieiieieeie e see e sieesieessee e A
Chapter 5 Case Study -- The Development Of A Chat Room System...........c......... 87

51 DESIGNBY USING OBJECT-ORIENTED METHODcccceviiriienieeniennieeeeseeeneesnieeneeens 87
511 User-oriented REQUIFEMENES.cccooeireriirieieeriesie st 87
512 Architectural DeSign DECISIONScccueieeriieiieniieeiie e see e 83
513 MainUseCase” Send aMESSAgEcccverirerieriierie e saens 89
514 OVErVIEW Of ClASSES.....ceeiirieeiiiieie sttt ire e s eee s 0
515 SequenCe DIagraiiS.....ccciiiieiieresiesieeieie e sreseesse st ssesseeaessesse e ssaessessessens 92

52 CHAT ROOM CLIENT APPLICATION GRAPHICAL USER INTERFACEcccovreirnnens 9%

5.3 ADDING NON FUNCTIONAL REQUIREMENTS.....ccueiieieriesiesseneeseesiessesnesesseesaesnes 100

Vi

54 MAPPINGFROM NFRSTO PEOCL POLICIESTO ASPECTS...cieeeeeeeeeeeeeeeeeeeeeeeeeeen 101

55 CAPTURING NFR-RELATED POLICIESBY USING PEOCLccoooviiriiircrieenien e 105
551 Access Control Policy for Security NFR.........cccoooviiiveiieceeeee e 106
552 Message Encryption Policy for Security NFR.........coooiiiiiiinieneeee, 108
553 Timing Policy for Performance NFR............ccoooriiininiene e 109
55.4 Accounting Policy for Accounting NFR...........cccooviiriiniinnnineeeene e 110
555 Logging Policy for Maintainability NFR..........cccocviiiiiiiiinnicceeeeiens 112

56 IMPLEMENTING NFRPOLICIESBY USING ASPECTJ.....coiiiiiiieiieeieeiee e 112
56.1 Implementation for Access Control POlICYccceveviienenieneseseceee 113
56.2 Implementation for ENCryption POlICY........ccccoviriiveneniniesese e 114
56.3 Implementation for Timing POIICYccevviiieiiiiiiesieiecce e 115
56.4 Implementation for Accounting POlICYccevveeviriicie e 115
56.5 Implementation for LOgging POlICYcccooueiiriiiinieni e 117
5.6.6 Evolution of Communication Protocolcccecerireneienincnesesesees 118

5.7 EVALUATION OF THE APPROACHcctrtirieeeiertisteseeessessessesseessessessessesessessessenens 119
571 Comparing The Traditional Approach And The Proposed Approach........ 120

(@4 aF=To] = g I @] [o: [U 1 [o] o U PRT 126
6.1 SUMMARY ...ciuiitiiteistestetestere et e eese st e it e e b e st bes s st e be st e st st e s e st ebe e ebesbe e e ereene e 126
6.2 FUTUREWORKooiiiiiiiiiiiieiese et ettt sttt sn e s b e s s s e nne s e 128

Chapter 7 Appendix: NFR ONtOIOgYcccceruerierierinieniesiesieeeesie e 132

Chapter 8 REfEIENCES......cuceeere et 133

Vi

LIST OF FIGURES

Figure 1 Separate design and implementation for NFRs from those for FRs..........c..c....... 4
Figure 2 Use "NFR Goa Graph" to represent "Deviation Design Pattern'...................... 10
Figure 3 SeCurity TAXONOIMYcocuiiiierieieie ettt se e saesae e ste s e naas 11
Figure 4 Quality Attributes and Architecture Tradeoff Analysis Method........................ 13
Figure 5 ASPECtd M Or CONCEPLS......cccvieiieiiriie et esieeesee e e esreesreessaeste s s sseesseesreesneeenes 36
Figure 6 UML Class Diagram For PEOCL DesignPolicy Structure...........cocoeeeeeeveeneenne. 67
Figure 7 Mapping From NFRs To PEOCL Design PoliCI€S.........ccooevevenenenes e 72
Figure 8 Design For Security NFRooov i 74
Figure 9 Network View of the Overall Chat Room System...........ccocvcevevenenieneienieene, 83
Figure 10 Class Diagram for Chat ROOM SEIVENcccovveiiiieiiinecie e 0
Figure 11 Class Diagram for Chat ROOM Client..........ccocoevveiienienieseeecie e 91
Figure 12 Sequence Diagram -- Send @ MESSAE.......cooererrierierriesieeiee e see e sses e seeseesees 93
Figure 13 Sequence Diagram — BIOCK Out @USENccccvviiieiiininesecese e A
Figure 14 Sequence Diagram — Change Passwordccccceveeieeieeieceesieesessee e eseeenns 9%
Figure 15 Sequence Diagram == LOGIN.......c.cuiirierierieniesiee e s seee e sree e sressessseeneas %
Figure 16 AuthentiCation WINAOW...........ccoocuiiiriieninneesie e sree s ssee s s s 97
Figure 17 Chat room client application main Window............cccccevierieenem e sse e 97
Figure 18 Sub menu items fOr 'COoNfigooevereierererere e s 9%
Figure 19 User List Management WINAOW............coeiivnieneeneesee e o8]
Figure 20 Design for Security NFRooio et 102
Figure 21 Design for Performance NFR ..o 103
Figure 22 Design for Accounting NFR........coooiiiiie e e 104
Figure 23 Design for Logging NFR ... 105
Figure 24 Sequence Diagram after adding 10gging NFR.........ccccooiviininiinineneeeneniens 121
Figure 25 Sequence Diagram after adding timing NFR ... 122
Figure 26 Sequence Diagram after adding encryption NFR ... 123

viii

LIST OF TABLES

Table 1 Positioning Various Policy MEeChaniSMS.........ccccevevenienienent siesee e seesiesieseeneens 53
Table 2 Positioning Various Policy Mechanisms (CONt.).........cccceverererieenenieseneeiienene 60
Table 3 Differentiating CharacteristicsS Of OCL........ccoouvieiriierenenire e 63
Table 4 Differentiating CharacteristicsS of ASPECI.....cccvvveriiieiiiiierie e 75
Table5 Use Case “Send aMESSAJE"c.cccvvieiieiierieeseesie et eee e sae e e seense s eneas 89

ABBRIEVIATIONSAND ACRONYMS

AOP Aspect Oriented Programming.
FR Functiona Reguirement.

NFR Non Functional Requirement.
OCL Object Constraint Language.
PEOCL Policy Extension to OCL.

UML Unified Modeling Language.

CHAPTER 1 INTRODUCTION

1.1 Motivation

Much of systems quality is expressed as Non-Functional Requirements [Chung00a,
Chung00b, Gross00, Chung94], also called Quality Attributes [Babacci95, Kazman99,
Kazman00]. Examples of Non Functional Requirements (NFRs) include performance,
usability, reliability, security, maintainability, etc. Non Functional Requirements are
crucia for system success, but they are hard to deal with since they

Impact the design and implementation in many different modules in a scattered

fashion, and

Often come or change at a later stage in the software life cycle
The result of the above two factorsis a costly evolution path toward a highly coupled

complex system.

In order to address this problem, we need to identify the NFRs as early and clearly as
possible and we reed to understand fully how NFRs affect the traditional object-oriented
designs. Work in this area includes Rational Unified Process [Rup00], NFR Framework
[Chung00a, Chung00b, Chung94] and Architecture Tradeoff Analysis Method

[Kazman0Q]).

A functional requirement (FR) can be expressed in asimple formula:

Output = F (Input);

While NFRs can not be easily expressed in that type of formula. A common
characteristic of all NFRsisthat NFRs are about how well the Function F works, not

about what F does.

The traditional approaches are mainly aiming at architecting F's design with all NFRs
considered. The implicit assumption is that we could identify NFRs before designing F.
The shortcoming of the traditional approach stems from the fact that NFRs, like other

requirements, often come or change at a later stage in the software life cycle.

1.2 Problem Statement

This research work addresses this issue from a different angle. Assuming the design and
implementation for FRs are done without worrying too much about NFRs, we want to
seek away to design and implement for NFRs in totally separate modules. The design
and implementation artifacts for NFRs are expected to reference the design and
implementation artifacts for FRs, because NFRs are about how well the functional

features are running.

Essentially the objective is to address the issue through propagating the separation of
concerns a the requirement level (i.e.,, NFRs and FRs are considered separately) down to
the design and implementation levels (i.e., separate the design and implementation of
NFRs from the design and implementation of FRs). So we reduce the problem to this

question: How to design and implement NFRs in a clean and modular way just like what

we are doing with Functional Requirements? A more specific question is: what kind of

design and code artifacts can implement NFRs in a modular way?

1.3 Proposed Solution

A magjor characteristic of a NFR is "crosscutting semantically but centralized
syntactically”, i.e.,, aNFR istypically described in one place but crosscuts many parts of
the system semantically. For example, a security NFR states that all transmitted messages
must be encrypted. It isasimple statement at the requirement level, but al the
subsystems that transmit messages must implement such a requirement. The design and
implementation for such a requirement will be scattered throughout the entire system.

A NFR could involve many different modules at the design level and the code level. So
the desirable characteristic of a NFR’s design and implementation artifacts is that they
should be able to reference and control multiple modules in the design and

implementation of FR, without actually modifying those modules.

We use the term policy for any mechanisms that are "crosscutting semantically but
centralized syntactically" (For details see section "3.1 Definitions of Policies"). The
policy mechanism in general provides the ability to express constraints and rules with
respect to an existing system. There are many different forms of policy mechanisms (e.g.,
OCL, PIB, COO, R++, Exception, ILOG JRules, Aspect], etc., see Chapter 2 and Chapter
3). A common feature of those policy mechanismsis that they are all crosscutting

semantically but modularized syntactically. Thisis exactly what the NFR's ideal design

and implementation should be.

We propose to use policies as the design and implementation artifacts for NFRs.
Specifically, after studying various forms of policy mechanisms, we extended OCL
[OCL97] to represent design level artifacts for NFRs, and then use aspects [AOPO1] as
implementation level artifacts for NFRs. Policy Extension to OCL (PEOCL) includes
OCL plus the NFR ontology (see "Error! Reference source not found.™) and UML

Metamodel [UMLMeta97]. “Figure 1” illustrates our approach graphically.

Development of Functional Features Development of Nonfunctional Regquirements
OOA: UML NFR
OO0D: UML Policy: PEOCL
OOP: Java Policy: Aspect

Figure 1 Separate design and implementation for NFRs from those for FRs

We propose to use Policy-Extension to OCL (PEOCL) to capture the NFR's design level
policies. Object Constraint Language [OCL97] is extended to include the ontology of
NFRs [Chung00a, Chung00b, Chung94, Babacci95] and to include UML Metamodel
[UMLMeta97]. The extension of ontology helps to enrich the predicates of OCL to
express NFR concerns easily. UML Metamodel enables us to reference collections of

UML model elements when expressing NFR policies. The ability to reference collections

of UML model elementsis essentia due the crosscutting nature of NFRs.

PEOCL policies can be implemented in either design patterns [Gamma97] or aspects.
The focus of this research work is to implement policies in aspects. More specifically, we
use Aspectd [AspectJ02]. Aspect] extends the popular object-oriented language Java and
has many language supports to address crosscutting concerns at the code level. We al'so

developed a generic abstract aspect library for common NFRs by using AspectJ.

As a case study of this methodology, we developed an online chat room client-server

system to illustrate and validate this approach.

1.4 Thess Contribution

The contribution of this thesis includes:

Identified a problem of NFR's scattered impact to design and code, and raised the
question of how to design and implement NFRs in a modular way. Specificaly, use
the term "policy"” to capture all design and implementation mechanisms with the

characteristics of "crosscutting semantically and centralized syntactically"

Surveyed policy mechanisms at the design level and the implementation level,
characterized policy mechanisms through a list of attributes. This not only helped

ourselves choosing the best mechanisms (i.e., PEOCL and AspectJ) for design and

implementation level artifacts for NFRs, but also will be useful for future research on
improvements to existing policy mechanisms to better suit the need of designing and

implementing NFRs

Proposed a software development methodol ogy to design and implement NFRs.
Specifically proposed to use PEOCL to capture design level policies for NFRs and to
use aspects to implement PEOCL policies. This methodology realizes the benefits of

the Separation of Concerns principle

Designed and implemented a generic abstract aspect library for common NFRs

Conducted a case study through implementing a distributed chat room system by

using the proposed methodol ogy

1.5 Organization Of The Thess

The rest of the thesis is organized as follows:

Chapter 2 reviews the state of the art in the areas of requirement analysis and definition,
design, and implementation for NFRs. Reasons are given informally on why OCL and
AspectJ are good candidates for representing the design and implementation artifacts for
NFRs. Each related work is presented one by one individually to provide some

background information for the readers who are not familiar with that particular work.

Chapter 3 analyzes policy mechanisms more generally through defining a list of attributes
of policy mechanisms. Various forms of concrete policy mechanisms are positioned by

using the list of attributes from this formal analysis.

Chapter 4 uses the result from chapter 3 to explain why AspectJ isideal for implementing
NFRs, and why OCL is not sufficient for representing design level artifacts for NFRs,
and then introduces Policy Extension to OCL (PEOCL). Then our proposed

methodology is explained through examples.

Chapter 5 presents a case study of the development of chat room system. The typical
artifacts by using the traditional object-oriented methodology are presented first, then

new NFRs are introduced, they are mapped to policiesin PEOCL, and then PEOCL

policies are further mapped to AspectJ code. We can achieve one to one modularized

mapping for most common NFRs.

Chapter 6 summarizes the overall work and points out the future work directions.

The appendix describes the NFR ontology, and an example of using design patterns to

implement policies.

CHAPTER 2 THE STATE OF THE ART IN ANALYSIS,

DESIGN, AND IMPLEMENTATION OF NFRS

This chapter reviews the background information on existing NFR-related work at the

requirement level, design level, and implementation level.

Readers who are familiar with those related works can skip the corresponding sections.

2.1 Requirement Definition And Analysis For NFRs

This section summarises these related works: nor+functional requirement (NFR)
framework, quality attribute and architecture trade-off method. Each of the related works
is discussed in one section. The key features, weaknesses and relevance to our work are

also discussed in each section.

2.1.1 Non-Functional Requirement Framework

The NFR Framework [Chung94, Chung00a, Chung00b] treats non functional
requirements as goals to be addressed during the development process. NFRs, major
design decisions, and their relations (e.g., refine, support, object to, etc.) are captured in a
Goal Graph. The nodes in the goal graph are either goals (i.e., NFRS) or design decisions.
Goals can be refined into detailed concrete goals. Design decisions can impact goals

positively or negatively.

A tool "NFR Assistant” is also provided by this research work, it supports:
Refining initial high-level goals to detailed concrete goals
[dentifying the decision points (need for tradeoffs)
Evaluating and choosing among alternatives
Recording arguments for or against particular development decisions and
tradeoffs

Detecting and correcting omissions, ambiguities, conflicts and redundancies

NFR Framework provides abody of NFR-related vocabulary, allowing us to succinctly
capture a large number of NFR-specific concepts in an organized manner. It also makes
the relationships between NFRs and intended decisions exp licit, this helps us to
understand fully the impact of every design decision, typically one design decision may

impact multiple NFRs.

Figure 2 shows an example of aNFR Goal Graph [Gross00]. The example captures the
analysis and design on how to provide a compact representation of the state of the
system, i.e., only the deviation from the normal state is stored, instead of all the states for

all the objects.

Minimize memory
utilization [system]

Good performance
[system]

Good performance

Reduce duplication
[processes]

[data]

Good performance
[network]

Duplicate
information
[deviation status

data]

Reference &
distribute on

demand [status
data]

Duplicate
information
[status data]

Figure2 Use " NFR Goal Graph" to represent " Deviation Design Pattern”

This work provides a solid framework to formally analyze and define non functiona

requirements and associate the non functional requirements with major design decisions.

It addresses mostly architectural issues at the requirement analysis and architectural-

design level. It does not address any issues at the coding phase.

10

2.1.2 Quality Attributes Taxonomy And Architecture Tradeoff Analysis

Method

The quality attributes Taxonomy is the result of CMU SEI’ s research work on how

quality attributes impact the software architecture [Babacci95, Kazman97, KazmanQ0].
The taxonomy is divided into these areas. performance, dependability, security, and
safety. Asillustration, the security quality attribute taxonomy is presented in "Figure 3

Security Taxonomy" [Babacci9s].

Confidentiality
o ONCEMS Integrity

Availability

Authentication

Security Interface Encryption

engineering . .
§ = Auditing and Analysis

p— Factors
Access contiol
Internal Auditing and logging
Kernelization

e Process models

Synthesis —e—ge—Security models

b Ncthods — Socure protocols

e Formal methods

Analysis e Penetration analysis

o Covert-channel analysis

Figure 3 Security Taxonomy

All quality attributes are analyzed through three dimensions: concerns, factors, and

11

methods.

Concerns are the parameters by which the attributes of a system are judged, specified and

measured. Requirements are expressed in terms of concerns.

Factorsare the properties of the system and its environment that have an impact on the
concerns. Depending on the attribute, the attribute-specific factors are internal or external
properties affecting the concerns. Factors might not be independent and might have
cause/effect relationships. Factors and their relationships should be included in the
system’s architecture. Security factors are the aspects of the system that contribute to
security. These include system/environment interface features and internal features such

as auditing.

Methods specify how we address the concerns. analysis and synthesis processes during
the development of the system, and procedures and training for users and operators.
Methods can be for analysis and/or synthesis, procedures and/or training, or procedures

used at development or execution time.

The terminology used in these taxonomies can serve as a vocabulary to specify a NFR,

and then drive the design of the architecture.

The Architecture Tradeoff Analysis Method (ATAM) proposes to identify sensitive

points and tradeoff points when designing the architecture of a system. Sensitive points

12

are the aternatives for which a dight change makes a significant difference in some

quality attributes. Tradeoffs are decisions affecting more than one quality attribute. The
identification, analysis, and documentation of sensitive point and tradeoffs improve the
chance of the overall architecture meets the required quality attributes. The direction of

this work (and research on NFR Framework) can be best illustrated through “Figure 4 .

Development of Functional Features Quality Attributes
Architect
OOA: UML 1 yieh(zlf;thod
OOD: UML
OOP: Java

Figure 4 Quality Attributes and Architecture Tradeoff Analysis Method

2.1.3 Conclusion

ATAM and NFR Framework are till relying on the traditional ways of designing and
implementing software, they try to uncover and fully understand more NFRs up-front and
design a software architecture that satisfies all the NFRs. They do not address either the
issue of NFR’s scattered impact to design and code, nor the issue of evolution (e.g., to

minimize changes when NFRs change or new NFRs come).

13

Overall, the NFR Framework and Quality Attributes Taxonomy/ATAM work provides a
solid foundation for the analysis and definition of NFRs at the requirement level. Our
work will not further address issues aready addressed by those works. Our work will

reuse the ontology used by NFR Framework and Quality Attribute Taxonomy.

2.2 Design For NFRs

This section provides background information on some existing mechanisms that can

represent design artifacts for NFRs.

2.2.1 Desirable Characteristics of A Design For NFRs

Thisisthelist of characteristics that we think a good design for NFRs should have, the

rationale for them are further described below.

The design artifacts for NFRs shall be separated from the design artifacts for
functional feature

The design artifacts for NFRs shall reference design artifacts for functional
features, idedlly the design artifacts for functional feature shall be from object-
oriented method

The design artifact shall be formal

14

The notation shall be easy to use

The design artifacts for NFRs shall be separated from the design artifacts for functional
feature. Separation of Concerns [Dijkstra76] is one of the most important software
engineering principles that helps to manage the complexity of a software system. Many
benefits can be derived from it: readability, tracability, non-intrusive adaptation,
evolvability, and reusability. NFRs and FRs are typically stated and considered separately
at the requirement level. It is very natura to map them separately into separate design and

code modules.

The design artifacts for NFRs shall reference design artifacts for functional features,
because NFRs describe how well those functional features should behave. Idedly we
think the design artifacts for functional feature shall be from object-oriented method,
because object-oriented method is the most widely adopted software devel opment

method today.

A forma notation gives us rigid designs. But notations that require high degree of

mathematical background typically will not get wide adoption. Thus we emphasis on

usability of the notation.

Base on those criteria, we will discuss OCL (Object Constraint Language) and PIB

(Policy Information Base) in the next two sections.

15

2.2.2 Object Constraint Language

OCL [OCL97] isaforma language to express side effect-free constraints. It can be
associated with UML [UMLOO]. OCL overcomes the disadvantage of traditional formal

languages, it does not require the user to have a strong mathematical background.

OCL istyped, each OCL expression has atype. Each OCL expression is conceptually
atomic (i.e., the state of the objects in the system cannot change during evaluation of the
expression). OCL does not have a flow control mechanism, it is not intended to be a
programming language. As a modeling language, all implementation issues are out of

scope and cannot be expressed in OCL.

OCL can be used to specify invariant on classes and types in the class model, specify
type invariant for Stereotypes, describe pre and post conditions on operations and
methods, describe guards, as a navigation language (navigating to attributes, operations,

association ends, associations), specify constraints on operations, etc.

The language constructs of OCL are listed below to give the reader a detailed view of the

language:

* Thebasic. and -> notation for getting the property (including attributes, operations,

associations, and association ends) of an object

* Conditional expression

16

Relational expression (relational operationsinclude =, >, <, >=, >=, and <>)
Logica expression (logical operatorsinclude ‘and‘, ‘or‘, ‘xor‘, ‘not’, and ‘implies’)
Arithmetical expression (operatorsinclude +, -, *, /)
Examples:
Wife's sex is female:
self.wife->notEmpty implies self.wife.sex=femae
A person can not both have a wife and a husband:

not ((self.wife->size=1) and (self.husband->size=1))

Types. basic types (integer, real, string, boolean), enum, al class specifiersin the
associated UML model, collections (set, bag, sequence), and “OclAny” (super-type of
al typesin OCL).
Notation for previous values in Post-Conditions (time expression), e.g.,

Person:: birthdayHappens()

post: age = age@pre + 1

age@pre represents the values of ‘age’ in precondition.

Operations on collections include “forAll“, “exists’, “select”, and “rgject”. e.g.,
employee->forAll(age>18) -- trueif everyoneis over 18 (aboolean value)
employee->exists(age>58) -- trueif atleast oneis over 58 (a boolean value)
employee->select(age>50) -- all employees who are under 50 (a collection)

employee->reject(isMarried) -- all employees who are not married (a collection)

17

The work by OMG on OCL 2.0 is being done right now, many proposals are being

reviewed and not finalized. We will only use OCL1.1 in this thesis.

2.2.3 Policy Based Management M 1B

Policy Based Management MIB is a domain-specific example of how NFRs can be
mapped to policies. [Waldbusser00] is a draft for the MIB definition of Policy-Based

Network Management. Some of the relevant concepts are presented as follows.

Policy-based network management is the practice of applying management operations
globally on all managed objects that share certain attributes. Policies aways express a
notion of:

if (an object has certain characteristics) then (apply operation to that object)

PIB (Policy Information Base) restricts Policies to take the following normal form:

if (policyFilter) then (policyAction)

A policyFilter is program code which results in a boolean to determine whether or not an

object is a member of a set of objects upon which an action is to be performed.

A policyAction is an operation performed on an object or a set of objects.

The execution model for policies on amanaged deviceis:

18

foreach element for which policyFilter returns true

execute policyAction on that el ement

Policy examples:
If (interface is fast ethernet) then (apply full-duplex mode)
If (interface is access) then (apply security filters)

If (gold service paid for on circuit) then (apply special queueing)

Policy filters and policy actions are expressed with the policy language. The policy
language is intended to be familiar to programmers in a variety of languages, including
Perl and C. Thislanguage is formally defined as a subset of 1SO C. Some examples of the
features that have been removed from the C language are: function definitions, pointer

variables, structures, enums, typedefs, floating point and pre-processor functions.

The possible attributes that could be filtered on are defined (by using ASN.1 notation) as

nodes of a MIB tree. Also a set of convenience C functions are predefined in the draft.

The PIB for differentiated service QoS (see [PIB00]) describes a structure for specifying
policy information that can then be transmitted to a network device for the purpose of
configuring policies at that device. The model underlying this structure is one of well-
defined policy rule classes and instances of these classes residing in a virtual information

store called the Policy Information Base (PIB).

19

The PIB consists of classes that represent functional elements in the data path (e.g.
classifiers, meters, and actions), and classes that specify parameters that apply to a certain
type of functional element (e.g. a Token Bucket meter or a Mark action). Parameters are
typically specified separately to enable the use of parameter classes by multiple policies.
Overal, this approach summarizes the frequently used rules in the "Differentiated
Services' problem domain, and then encodes all those rules into metadata represented in

a Policy Information Base.

2.2.4 Design Patterns

Some design patterns [Gamma97, WeissO1] can be used to express policies aswell. The
Adapter pattern can be used for adding actions before and after functional calls. The
Vigitor pattern can be used for adding new crosscutting features on a complex data
structure. The Subject and Observer pattern can be used to implement automatically-
triggered rules that monitor the state of the system. The Pipe and Filter pattern and Chain
of Responsibility pattern can be used to enable the addition of new responsibilities

without modifying the original code.

It is a common practice by the industry to use design patterns (e.g., adapter, visitor,
observer, chain of responsibilities, etc.) to facilitate the non+intrusive addition of design
and code. The main drawback of this approach is its anticipatory nature. It assumes that
at the time of the initial design, the future expansions in every feature have been

anticipated. So the hooks are built in the very beginning. That is not necessarily aways

20

true. Firgt, the future extensions may not be anticipated. Second, the anticipated
extensions may never happen, and the unnecessary complex design and implementation
becomes the 'fat' of the system that incurs unnecessary cost in both the initial

implementation and future maintenance.

Also the above mentioned design patterns tend to be more suitable for functional features
than for NFRs. There are functional features that are crosscutting, e.g., synchronization.
But the scope and pervasiveness of NFRS' crosscutting nature tend to demand more
flexibility than crosscutting functional features. For example, adapter pattern allows us to
add extra behaviors before and after a method invocation, so it is possible to add logging
messages through adapters to log the entrance and exit of a method. But what if the
requirement is to log al method invocations? Then we will have difficulties to log the
invocation of the methodsin the adapter itself. Policy mechanisms like OCL or AspectJ

do not have this type of difficulty.

2.2.5 Conclusion

OCL is associated with UML class diagrams and is formal but not too formal, both are
very desirable features that we want (see section 2.2.1). But it lacks the vocabulary for
NFRs and it can not specify constraints on a collection of UML model elements. These

drawbacks will be addressed in section 4.1.

21

Design patterns are typically summarised from widely- used practices, they are proven
and can be adopted without extra programming language or notation. But for the problem
we are trying to address here, i.e., to create separ ate design and implementation artifacts
for NFRs, the two characteristics of design patterns -- anticipatory nature and non

pervasiveness -- makes it less attractive than the other policy mechanisms.

Policy Information Base is a good design approach to address NFR concerns. It separates
the design decision for NFRs from those for FRs. Thisis the ideal approach to the design
and implementation of NFRs. We will continue to follow and generalize the idea of using
policies to address NFR concerns in the later sections: section 2.3 will further review
many different forms of policies at the implementation level, and section Chapter 3 will

analyze various policy mechanisms formally through defining a list of characteristics.

2.3 Implementation for NFRs

This section reviews various policy mechanisms that can be used to implement NFRs.

2.3.1 Desirable Characteristics of An Implementation For NFRs

Quite similar to the criteria of a desirable design for NFRs, the implementation for NFRs

should have these characteristics:

The Implementation for NFRs shall be separated from the implementation for

22

functional features
The implementation for NFRs references implementation artifacts (i.e., code) of

functional features from object-oriented programming methodol ogy

Those two criteria will be described as "syntactically modularized/centralized, while

semantically crosscutting” in section 3.1.6.

Specificaly we will review these related works: Constraint object-oriented (COO)

programming style, ILOG JRULES, R++, Exceptions, and AspectJ.

2.3.2 Constraint Object-Oriented Programming Style

[BolognesiO0] introduced a new programming style — Constraint-Oriented Style --into the
existing object-oriented language Java. The new method is called "Constraint and Object

Oriented” (COOQO) programming style. The main concepts of COO are explained below.

Constraint-oriented decomposition models abstract aspects of behaviour, or functionality,
that ignores physical boundaries. Constraint-oriented decomposition is aform of
functional decomposition, it could be regarded as orthogonal to object-oriented
decomposition (where system is divided into self-contained objects that has both data and

associated functionality).

A constraint is modeled as an object. There are two types of constraints. D-constraints,

23

which are instances of D-classes, and CO-constraints, which are instances of CO-classes.

D-class and CO-class are defined below.

An observable method of a class is a public method, whose return value type is aways

Boolean, whose parameters are read-only (i.e., no out parameters).

A D-Class (Data-encapsulating class) is a class which contains at least one data field
and at least one observable method, and contains two public methods Store() and
Restore(), and possibly some private store variables (to implement a recovery
mechanism). A D-class may include other generic methods (this falls into the traditional

object-oriented programming paradigm).

The syntactic structure of aD-classis as follows:

class D implements Recoverable {

mmmmmmmm e Data Fields ------ --

Nemmmmmm e Observable Methods -------------------

public Boolean M (Typel parami, , TypeN paramN) { }
e Store Variables and Methods ------------------

public void Store() { ...}
public void Restore() { }
[/----- Other Methods (including Traditional object-oriented code) ------

}

interface Recoverable {
public void Store() { }
public void Restore() { }

24

A CO-class (Constrain-Oriented class) is a class that must contain:
1) One or more constraints, that is, encapsulated variables of some CO-class or
D-class,
2) One or more CO-methods (these are always observable);
3) Zero or more private test methods;

4) Two public methods Sore() and Restor ().
The syntactic structure of a CO-class is:
class C implements Recoverable {
CO-classl ¢ = new CO-classl();

D-class2 d = new D-class2();

public Boolean M (...) { ...}

femmmrmmm e Test Methods ---------------------------
private Boolean T (...) {}

N e Store methods ----------------=----=---------

public void Store() { ... }
public void Restore() { ... }

A Test Method is a private, Boolean, parameterized, read-only method without side

effects, those methods are used exclusively for testing conditions over their parameters.

A CO-method (Constraint-Oriented method) is a method of a CO-class, and defined as
the composition of one or more observable methods of the constraints declared in this

CO-class, and zero or more test methods in this CO-class.

25

The syntactic structure of the definition of a generic CO-method is:
public Boolean M (Typel paraml,, TypeN paramN) {
Boolean bi =N (paramX1, ..., paramXn);
é.oolean bj =T (paramY1l, ..., param¥Y m);

return (bi & ... & bj & ..);
}

Where M, N, and T are arbitrary method names, Typel to TypeN are arbitrary
types.

CO-classes and D-classes are different. A CO-class does not encapsulate directly data
variables, but only constraints, its CO-methods, which are the only observable methodsin
the class, can therefore only affect the constraints. Conversely, a D-classdirectly

encapsul ates data variables, which can be modified by the observable methods of the

class.

COOQO program: A constraint and object-oriented (COQ) program is a program where al

user interactions are implemented as calls to the CO-methods of a (top) CO-constraint.

Overall, this approach wraps the traditional object-oriented classes with extra methods
and classes, so that the different conditions can be checked, specifically:
CO-classes and their instances (CO-constraints) express structured (or
composite) constraints involving one or more actions (CO-methods);

D-Classes and their Instances (D-Constraints) expressbasic (or primitive)

26

constraints involving one or more actions (observable methods) and one or more
encapsulated state variables;

Observable Methods express basic constraints on the parameters of one action
and on their relations with state variables;

Test Methods express basic constraints on the parameters of one action.

The COO enables us to express a form of functional decomposition that is orthogonal to
object decomposition. The functional constraints expressed by COO crosscuts many
different types of objects. The main weakness of COO is that the resulting code of
applying COO style is not very readable, more guidelines are required to make it easy to

understand.

2.3.3 ILOG JRules

ILOG JRules [JLOGREF02, JLOGUSERO0?] is a general-purpose expert-system
generator that combines rule-based techniques and object-oriented programming to help

the programmers add rule-based modules to applications.

JRules does not require a proprietary language to define the objects used by the rules,

ILOG JRules directly use the Java objects. The design of the application and Java classes

are independent of whether ILOG JRules are used.

JRules are <pattern, action> pairs. The pattern serves as a condition, and it is often used

27

to decide which objects the action should operate on. The pattern matching is performed
on ‘working memory’, which consists of all the current ‘working objects’ (Jrule provides
commands to add/remove objects into/from the “working memory”). JRule instances are
created and put into ‘agenda based on the matched object set. Jrule instances in the

‘agenda’ can be fired explicitly.

The agenda is a place that stores rule instances that are ready to be fired. A rule instance
is fired when its action part is executed. Rule instances placed in the agenda are said to be

eligible.

In the agenda, rule instances are ordered according to four criteria that determine which
rule should be fired first.
Refraction--A rule instance that has been fired cannot be re-inserted into the
agenda if no new fact has occurred, that is, if none of the objects matched by the
rule is modified, or if no new object is matched by the rule.
Priority-- The second criterion, which is taken into account to decide at which
position arule instance should be placed in the agenda, is the rule priority.
Recency--If two rule instances have the same priority, the rule which matches the
most recent object (the most recently asserted, modified or retracted object) will
be fired first.
Lexicographic order of rule names--At this level, if two rules have the same
priority and the same recency, the next rule to be fired will be the one that appears

first if the rules are sorted according to the lexicographic order of their names.

28

Priority, recency, and lexicographic order are used to resolve conflicts when several rule

instances are candidates for firing at the same time.

Jrule a so supports temporal reasoning: The “wait” statement is used in the condition part
of arule. The wait statement allows you to test if conditions become valid during a
designated waiting period. It may also be used to test whether conditions remain true for

awaiting period.

Jrules are organized into groups called “packets’. "Packet" is represented as a property of

arule.

234 R++

R++ isintroduced as an extension to C++. Its magjor new language construct is "Rule”

[Ahmed97, Litman97]. R++ rules are triggered automatically upon relevant data change.
R++ rules can be used to implement crosscutting constraints or rules that monitor data in
many different objects. The following sections will first give a simple example, and then

will describe the R++ rule, its usage, and its implementation.

Thisis asimple example of using R++ rulesin a C++ class "Person".

class Person {
private:
String name;
monitored int age; /I a monitored member data

29

monitored Person * spouse;

monitored Set_of p<Person> children;

rule reflexive_spouse; /I arule asa member of aclass
rule child_age check;

H
I1'f X's spouseisY, then Y's spouse is X.
rule Person::reflexive_spouse{ /Il the definition of arule
Person *s = spouse // the <condition> part
=>
Ss->sat_spouse(this); Il the < action> part
}

/I Check for child older than parent.
rule Person::child_age_check {
// branch binding: for all "child" in set 'children’
Person *child @ children &&
child->age > this->age
=>
cout << "Error: " << childname
<< " isolder than parent "
<< this->name << endl;

The key points of the new construct ‘Rule’ in R++ are presented as follows.

One important contribution of R++ isthat it introduced rule as member of class. R++

Rules are introduced as a natural extension to object-oriented classes, they support

inheritance, overriding, and visibility rules.

R++ rules are also called path-base rules. A path-based rule only uses things visible in

this object (i.e., data and functiona members of itself, and visible members of or pointed

to by its members, and so on), it does not violate encapsulation.

A R++ Rule is defined as a <Condition, Action> pair. The ruleis triggered automatically

30

and implemented in one centralized place (not scattered as in procedural code). The rule

also resides in the same place as the data.

A "Condition" in a R++ rule can contain:
e Monitored member data
* Null (asasymbol that variables can compare to)
* Function cal (shall be side-effect free, because the condition could be evaluated
many times before the rule is triggered)
e Qudifier (there are two qualifiers: "al" and "exist")
e Simple binding (bind a value to a variable)
* Branch binding (bind a sequence of valuesto a variable)

e Globa and/or static data

Rules are triggered by either "relevant construction” or "relevant change" of data, i.e.,

whenever the related datais constructed or modified, the rules shall be re-eval uated.

The major steps in the execution of one rule include: Trigger --> Evauate --> Fire-->
Return. A relevant change or construction triggers the re-evaluation of arule' s condition,

if the condition is evaluated to true, then the rule is executed (i.e., fired).

The order of execution for multiple rules follows three principles: “ specific-to-general”,

“depth-first”, and “forward-chaining”:

Soecific-to-general: derived class rules are evaluated before base class rules.

31

Depth-first: arule’' s action can be temporarily interrupted when it performs a
triggering event, causing other rule(s) to be evaluated and possibly fired. The origina
rule’ s action will be resumed once those other rules complete.

The order of execution also follows Forward-chaining, i.e.,a“chan” of rule firings
as the action of one rule triggers another rule, and that rule fires and triggers another
rule, etc. Thisisin contrast to “backward chaining” where rules move backward from

adesired goal to a state that confirms the goal (e.g. prolog).

R++ rules can be used to enforce invariant, detect constraint violations, express business
rules and engineering rules, monitor for important state and events, and propagate

information.

R++ is converted to C++ through a Trandator. The Trandator expand s the predefined

get/set methods on the monitored data member. The expanded code evaluates al related

rules automatically.

R++ rule is very simple and natural to use. Thisis its strong point, but the simplicity is

also its weak point, e.g., it can not monitor primitive data types, and only top level class

and attribute can be monitored.

32

2.3.5 Exception Mechanism

Many programming languages like C++ and Java have built- in exception mechanisms
(see [JavalQ]). Exception mechanism separates the normal control flow from the
exceptional control flow under error conditions. This separation of concerns and
centralized exception handling reduce the complexity of programming. Exception
mechanism can be viewed as a specia form of policy: it provides a mechanism to specify

the policies about how to handle faults.

For example, if there is ablock of code that uses references to many objects, those
references could potentially be NULL. Instead of checking every reference before using
it, we can use any references freely without any checking and then use exception

mechanism (the ‘catch’ statement) to specify the NULL reference handling policy:

try { // ablock of code that uses many references
...... refX.attributeA
...... refX.attributeA
...... refY .attributeB
...... refZ.attributeC

}
catch (NullReferenceException €) {

...... /I Exception handling code here
}

Examples of the exception handling behaviour:
logging,
raise a different exception,
roll back a database transaction that was started after try,
free memory created before the exception (to avoid memory leak),
release alock that was obtained before the exception
raise a different exception, etc.

33

The native exception mechanisms in programming languages impose certain restrictions
on where the exception handling code shall be put (e.g., in Java, ‘catch’ block must
follow the ‘try’ block), and the exception handling is at code level. The control follow is

sequential and will jump to the catch block once an exception happens.

Programmer can define new types of exceptions, and raise them programmatically.
Uncaught exceptions are further propagated to the next higher-level nesting block until
there is a corresponding ‘try-catch’ block. The program exits if there is no corresponding

‘catch’ block.

A typical exception mechanism follows the <Event, condition, action> pattern, and
syntactically, the code for ‘event’, ‘condition’, and ‘action’ are restricted to be in the

same place (e.g., in Java ‘catch’ must follow ‘try’).

The ‘exception’ mechanism and the typical <condition, action> rule mechanism both
require a‘jump’ of the control flow. When the exceptional situation raises or the
condition of aruleis satisfied, the normal control flow will be interrupted (synchronously

or asynchronously) by the exception handling code or the rule action code.

Overal, native exception mechanisms in programming languages are restrictive but very

simple and elegant. They are meant mainly for error handling (not for arbitrary policy).

34

2.3.6 Aspect]

Aspect Oriented Programming [AOPO1] employs specia abstractions known as aspects
to separate crosscutting concerns throughout the software life cycle. Crosscutting
concerns are features that cannot otherwise be cleanly encapsulated in one development
artifact and are tangled over severa artifacts. Special composition rules combine the
aspects with artifacts (crosscut by features encapsulated by the aspects) with respect to
reference points in the artifacts. These reference points are termed as join points.
Separation of crosscutting features makes it possible to localize changes during
maintenance, customization and extension and helps improve productivity and quality.
Some aspects can also be highly reusable e.g. domain specific aspects such as those

encapsulating platform specific features.

Aspect]is aresult of many people’'s 10 years of research [AspectJO2]. It is an elegant
extension to Java programming language that supports Aspect Oriented Programming.
AspectJ provides meta-level language constructs that allows the program to manage

(monitor, enhance, modify) another program.

AspectJ introduces some new language constructs into Java: Join Point, Point Cut,
Advice, Cflow, Introduction, and Aspect. A Join Point refers to one of set/get method,
constructor, method call, or cflow. Point cut combines a collection of join points. A cflow
is aprimitive pointcut that includes all join points within the dynamic control flow of any

join point in a specified pointcut. An Advice adds additional actionsto take at join pints.

35

Introduction adds additional members into classes. An aspect is composed of pointcuts,
introductions, and advice. An abstract aspect does not provide full details on every
pointcut or method, i.e., some of its pointcuts or methods can be partially defined, so that
derived aspects can inherit and reuse its interface, defined pointcuts, and defined methods

by filling in the undefined portion.

“Figure5 Aspectd major concepts” illustrates the relationship among Aspect, Point Cut,

Class, Join Point, and Cflow, as discussed in the previous paragraph.

Cflow
/Join point
ClassX / ClassY
M20:
M et?éd M M M M T new
Point cutPcol | 1 2 3 10 11 + call Mi
Aspect .
Point cut PC1 + set/get

Figure 5 Aspectd major concepts

The concept of ‘crosscutting’ is best illustrated by the lines (i.e., pointcuts) that cut

through Class X and Class Y.

The main issue of this area of work is that there is no methodology on how to develop

software by using AspectJ

36

2.3.7 Conclusion

AspectJis an extension to Java, whichis designed to address crosscutting concerns.
Aspect] meets our criteria (see section 2.3.1): it can reference the implementation
artifacts for functional features (i.e., reference Java classes and methods through
pointcuts) and add extra behaviour (i.e., advice) without actually modifying those
referenced artifacts. We will use AspectJ to implement a generic abstract aspect library
for NFR concerns (see section 4.3.3) and to implement a chatroom system in our case

study (see section 5.6).

The other mechanisms are not satisfactory enough. R++ and JLog Rules can only handle
rules whose conditio ns are system state- conditions (see section 3.2 for definition of
"system state-condition” versus "program syntax-condition"). Exception mechanism is

only for fault management. COOQ is not quite readable.

The next chapter will continue to analyze policy mechanismsin a more detailed and

generic way, by defining alist of attributes of policy mechanisms.

37

CHAPTER 3 ANANALYSISOF POLICIES

Given the crosscutting nature of both policies and NFRs, policy mechanisms can be good
candidates for designing and implementing NFRs. The previous chapter has reviewed

some policy mechanisms one by one individually and made our selections informally.
This chapter will analyze policy mechanisms more thoroughly. A detailed list of
attributes of a policy mechanism will be presented. The characteristics of the various

concrete policy mechanisms will be analyzed by filling in the values of those attributes.

This detailed analysis of policies gives us in-depth understanding of policy mechanisms.
A generic in-depth understanding of the policy mechanisms has helped us finding the
policy mechanisms for our particular problem, and also has helped to ascertain that our

choices are the right ones.

The result of this analysis can also be viewed as alist of requirements that a

comprehensive policy mechanism could have. This can be the base for future research on

better policy mechanisms for designing and implementing NFRs.

3.1 Definitions of Policies

This section presents various definitions of the term “Policy”, and then presents the

definition of “Policy” as used in this research work.

38

3.1.1 Variousdictionary definitions of the word “Policy”

These are some dictionary definitions of the term ‘policy’.

Webster’s New World Dictionary
[Policy]: a principle, plan, or course of action, as pursued by a government, organization,
individual, etc.

[Principle]: A rule of conduct (Especially the right one).

Merriam-Webster College Dictionary

[Policy]:

1 a: prudence or wisdom in the management of affairs b : management or procedure
based primarily on material interest

2 a: adefinite course or method of action selected from among alter nativesand in
light of given conditions to guide and determine present and future decisions b: a
high-level overall plan embracing the general goals and acceptable procedures especially

of agovernmental body

3.1.2 Variousformsof “Palicies’ in society

Variations of forms of “Policies’ in the society include:
Consgtitution, Law, by-law, regulation, policy

They prescribe for elements of a society the authorizations (permitted and not permitted)

39

and the obligations (must do and must not do), the organizational and betavioral
constraints and rules within a given context and a given scope. The differences among

them are in the degree of formality and the degree of punishment when they are violated.

Some policies put constraints and rules on the definition and applicatio n of other policies.
E.g., congtitution decides how to make a law, some regulations give guideline on how to
make other regulations, or on what to do when the policy itself is violated (e.g., alaw
about “law enforcement”). Some policies refine the detailed aspects of a given policy (A

high- level policy is trandated into many low- level policies)

A policy states a condition that must always hold true, or arule that describes actionsto
be taken within a context, or ssmply a procedure of actionsto be taken. A policy of an

organization is stated at the highest possible level where it can be applied. All sub-

organizations shall interpret that policy within their own context and execute it
accordingly. The form of policy isa‘constraint’ or ‘rule’ or ‘procedure’, but policy is
beyond ssimply constraint or rule or procedure, policy is stated at a high abstraction level,

and is only stated once but enforced everywhere it applies.

3.1.3 Definition of policiesasrules

IETF work on policy MIB [Waldbusser00] defines aPoalicy as arule with this format:

If (policyFilter) then (policyAction)

40

A policyFilter _is program code which results in a boolean to determine whether or not an

object is a member of a set of objects upon which an action is to be performed.

A policyAction_is an operation performed on an object or a set of objects.

3.1.4 Definition of policies as rules and expressions

The DMTF (Distributed Management Task Force) Service Level Agreement (SLA)
Working Group [DMTFSLAOQ2] defines policiesas "rules and expressions that represent
management goals, desired system states or the commitments of a Service Level

Agreement".

3.1.5 Definition of a policy as either a goal or a strategy to achieve a goal

[Bearden01] defines policy as "a specification of management goal or the strategy to
achieve agoal". Where policy goal specifies what to achieve, policy rule specifies how to
achieve the goal. It also defines policy refinement as "the mapping from policy goal to

policy rule".

3.1.6 Palicies as Semantically-Crosscutting and Syntactically-Centralized

Constraints or Rules

41

The following is our high-level definition of “policy”. It has been used to direct our

research work.

In the domain of computer software programming, a policy isa semantically-crosscutting

and syntactically-centralized constraint or rule.

" Semantically- crosscutting” means that the policy imposes constraints and rules on items
in many different modules. e.g., given aUML class diagram of a GUI design, the access
control policy imposes constraints on every class that should be access-controlled based
on certain criteria. A straight-forward design isto modify every access-controlled class to
enforce this policy. But that is intrusive and not maintainable. Thus we have this
“syntaically-centralized" restriction in the definition of policy. "Syntactically-centralized"

means that the policy's definition must not be scattered, but must be centralized or

modularized in one place.

Note that just arule or a constraint does not qualify as a policy, at least not a policy of

interest to this research work. For example, a simple constraint about an attribute value
must be within the range of 0 to 100, assuming the enforcement does not have scattered
impact to implementation, then it could be viewed as a policy, but it isatrivia case and

of no great interest to this work.

There are many mechanisms that are capable of supporting polcies according to the

above definition. As reviewed one by one individually in the previous chapter, they all

42

look very different and use many differnt terms and differnt mechanisms. The next
section will provide a list of attributes for policy mechanisms, that list will be used to
characterize those concrete policy mechnaisms, so that we cancompare and evaluate

those policy mechanisms through a common set of criteria

3.2 Attributes Of Policy M echanisms

In order to find concrete policy mechanisms that can be used as the design and
implementation artifacts for NFRs, we developed a list of attributes of policy
mechanisms. Those attributes are defined in this section. The next section will fill in the
values of those attributes for each concrete policy mechanism that we have reviewed in
chapter 2. The result of this analysis will be used in the next chapter to select our

representations for design and implementation artifacts for NFRs.

The next two subsections will present the attributes of policy mechanisms for asingle
policy and for a collection of policies respectively. The definition of each attribute is

presented and examples are also given to illustrate the concept.

3.2.1 Attributes Of Policy Mechanisms For A Single Policy

Thisis the list of attributes that we will discuss below:

43

1. Domain Specific 2. Operationa 3. Scope

4. Structure 5. Stateless 6. Prioritized

7. Presentation Style 8. OPI Type 9. Condition Type

10. Development Phase 11. Active 12. Triggering Direction

13. Triggering Focusness

14. Data Location

15. Run Time Changeable

16. Encoding Method

17. Code Generated

18. Parameterized

19. Delayable On Conflict | 20. Cancelable On Conflict | 21. PDP and PEP
distributed

22. Modularity

A[1l] Domain Specific

This attribute indicates whether this policy mechanism is for a specific domain or for

generic programming. A policy mechanism can be for generic software development

(e.g., OCL, AspectJ), or for a specific domain (e.g., Ponder [Damianou01] is for

Security/RBAC, PIB is for network management).

A[2] Operational

Policies can be classified into two major categories. Nortoperational Policies, and

Operationa Policies. A constraint is a form of non-operational policy.

Non-operational policies (also caled ‘ goa’ in [Bearden01]) do not have actions in them,

44

and are usually side-effect free (e.g., OCL expression is side-effect free). They are useful
at the modelling level. e.g., constraints are useful at the modelling level. An example of
non-operation policy is

Automated Teller Machine should respond within 10 seconds.

But when a nonoperational policy is mapped to the code, the implementation will have
to make decisions to make it operational. Because even though the action is not
mentioned explicitly at the specification level (you can consider it as an incomplete
specification, but that happens frequently in the real life), the piece of code that has no

Sde-effect is equivalent to nothing.

Operational Policies have actions in them, typically they are ‘ rules, i.e., a <condition,
action> pair. They are useful at both the implementation level and the modeling level.
Thisis an example:

If the ATM does not respond within 10 seconds, then notify the teller by raising

both visual and audio alarms.

Non-operational policies can be viewed as a degenerated or special case of Operational

Policies (i.e., constraints can be trandated into rules with action part is always “raise fatal

error exception”).

Non-operational policies typically are high level policies (specify ‘what’) and will be

eventually mapped to operational policies (specify ‘how’). The relationship between non

45

operational policies and operational policies shall be specified during policy-refinement

process.

A[3] Scope

The scope of apolicy can be inter-object (i.e., about several objects) (e.g., AspectJ), or
intra- object (i.e., about one object) (e.g., R++); Loca (i.e., in one machine), or distributed
(across many machines) (e.g., PIB); System behaviour (i.e., about the behaviour of the
system being developed), or DesignPhase (i.e., about the behaviour of the designer) (e.g.,

design patterns).

An "intra-object policy" uses and impacts local data (also known as "access- limited").
For example, in R++, UML/OCL, and Object Oriented Constraint Programming style, the
policies (rules and constraints) follow the visibility rule of object-oriented language. This

type of rulesis aso called "intra-object” rules.

An "inter-object policy” uses and impacts data globally (in the same process or address
space). For example, in ILog, the rules work on in-memory data, it could be any objects.
This type of rulesis also caled "inter-object" rules. ILog rules use the condition (it is
called "pattern” in ILog) to decide which objects should be acted upon (see ILog Rule

Language User Manual).

A[4 Structure

The policy structure can be "event, condition, action” (e.g., ILOG JRules), "condition,

46

action” (e.g., AspectJ, R++), or just a constraint (e.g., OCL).

A[5] Stateless
A policy is stateless when the execution of this policy does not affect the next execution

of this policy or other policies.

A[6] Prioritized
Whether the policiesin this policy mechanism is prioritized or not. Priority can be used

for conflict resolution.

A[7] OPI Type
OPI type can be one or the combination of Obligation, Permission, and Interdiction

[Barbuceanu98].

Permission, obligation, and interdiction can be converted from each other:

P(X)=+ O (+X)

I(X) =+ P(X)
Permission can be viewed as the negation of nontaction; Interdiction can be viewed as the
negation of permission [Barbuceanu98]. But some mechanisms provide explicit support

for all forms of permission, obligation and interdiction. Others do not.

For example, Ponder supports obligation, positive and negative permission and subject-

enforced refrain; OCL supports obligation and positive or negative permission, Java/C++

47

exception mechanism supports negative permission. All policy mechanisms support at

least positive obligation of the object (i.e., what the system should do).

Policy can be used in a positive way: to specify what the system should do (positive
obligations), or to specify what the system is permitted to do (positive permissions).
Policy can be also used in a negative way: to specify what the system should not do

(interdiction or the obligation of negation of the action).

Policy can be used to specify what the system should do or is permitted to do. It can aso

be used to specify what an external entity should or is permitted to do onto this system.

A[8] Presentation Style
In the logical style, the policy is defined as logic statements. Thisistypical in expert

systems and traditional rule-based programming languages.

In the procedural style, the policy is defined procedurally, typicaly in the syntax of a
popular programming language. This reduces the barrier to introducing new language

structures.

In the object-oriented style (e.g., R++, AspectJ), the policy is defined procedurally but in

association with objects and following certain visibility rules, typically by extending a

popular programming language (e.g., R++ extends C++ and A spectJ extends Java).

48

OCL isahybrid, it extends UML Class diagrams, but it has some logical expressions.

A[9] Condition Type

There is usualy a condition in the structure of the policy, the condition could be about
the syntax of another piece of program (e.g., AspectJ), or about the system state (e.g.,
R++). If the "condition type" is "program syntax", then it has meta- programming ability

and can be used to constrain, enhance or modify another piece of program.

For example, in AspectJ, you can specify arule like this: "For al methods of classesin
package X, if the name of the method matches pattern Y, then run function Z to validate
the input parameters of that method". This rule references multiple methods in another
piece of code, it is a meta-level programming statement. The condition in the rule is

about the syntax of another piece of code rather than the values of particular variables.

The condition types "program syntax™ and "system state” could be combined and used in

one policy mechanism, even though most existing policy mechanisms tend to emphasize

on only one of them.

A[10] Development Phase

A policy mechanism can be used as design Specification (e.g., OCL, Ponder

[Damianou01]) or Code (e.g., Aspect], R++, and Exception in Java).

A[11] Active

49

An active policy is enforced automatically, while a passive policy needs to be triggered

(like afunction call) by an external entity.

A passive policy can only be explicitly triggered. Y ou can view a procedure with only a

conditional statement as a rule or policy, but the procedure will not run until it is called.

The goa-driven rules in prolog Clocksin87] is actually passive, rules always explicitly

mention other rulesin their definitions so that they can be triggered.

An active policy will be triggered automatically whenever appropriate, e.g., in R++, the
rule is triggered whenever the relevant data referenced in the rule's condition are
changed, no explicit triggering to the rules are required. An R++ rule can be triggered

even if it is not mentioned anywhere else (beyond where it is defined).

Another example of automatically triggered ruleis the 'triggers that can be created on a
database server [Oracle99]. The DBMS guarantees that a 'trigger’ is automatically called
whenever the specified situation arises (e.g., relevant data is created, updated, or deleted).
The syntax of atrigger on atypical relational database:

create trigger xyz on delete begin <body> end

A[12] Triggering Direction

A data-driven policy istriggered by the change of the data that are referenced in its

condition. When the action in one rule changes some other data, some other policies may

50

be triggered. Thiskind of effect isalso called "forward-chaining”. R++ rules and ILog

rules are both data-driven.

A goal-driven policy is triggered by the request to satisfy a given goal. To satisfy the goal
as specified by a policy, other policies may be triggered. It is aso called "backward-

chaining”. An example is the prolog rule.

A[13] Triggering Focusness

Loosely-focused policy-triggering criterion may evaluate a rul€'s condition even if it is
not necessary (e.g., no data used in the rul€'s condition is changed) (e.g., COO). Tightly-
focused policy-triggering criterion only evaluates arule if it is necessary (e.g., the data
used in the rul€'s condition are changed, or called by another rule). Most operationa

policy mechanisms have a tightly- focused policy-triggering criterion.

A[14] DataL ocation

The data location of a policy can be classified into two categories. Policy for persistent
data: Policies are triggered by changes in persistent data (e.g., exception mechanism in
Java and C++). Policy for in-memory data: Policies are triggered by the changes of in-

memory data (e.g., PIB).

A[15] EncodingMethod
Encoding methods include "as code" or "as metadata’, i.e., a policy can be represented by

code (e.g., R++, Aspect]), or by metadata and interpreted at run time (e.g., PIB).

51

A[16] Code-generated vs Engine-based
In engine-based (i.e., interpreted) policy implementation scheme, there is a predefined

and fixed rule engine (e.g., PIB) that reads rules as data and processes the rules.

In the code-generationbased (i.e., compiled) policy implementation scheme (e.g.,
Aspect], R++), there is no fixed code, the code is generated based on the rule definition.

When the rules change, the code changes too.

A[17] Run-timeChangeable
Some policy mechanisms allow policies to be changed at run-time (e.g., PIB), others do

not (e.g., AspectJ, R++, exception mechanism in Java/C++).

A[18] Parameterized
To support run-time changeable policy, either the entire policy is encoded as metadata

(e.g., PIB), or the policy is parameterized to allow update at run time(e.g., ILOG JRules).

If apolicy mechanism supports parameterized policies, and it implies that it supports run
time changeable policies. But not the other way around, since there are other ways to

make things run-time changeable (e.g., in Java, classes can be loaded dynamically).

A[19] DelayableOnConflict

Whether the execution of this policy can be delayed upon conflict with another policy's

52

execution (also see: Conflict resolution method).

A[20] CancelableOnConflict
Whether the execution of this policy can be cancelled upon conflict with another policy's

execution (also see: Conflict resolution method).

A[21] PDP and PEP Distributed
This attribute indicates whether PDP (Policy Decision Point) and PEP (Policy

Enforcement Point) [Boutaba0l, CorradiOl] are separated into different machines.

A[22] Modularity
Aspect] provides extremely high modularity, each aspect is in a separate module. While
JavalC++'s exception mechanism has relatively low modularity, it is dightly scattered

(but still better than totally scattered code when not using exceptions at all).

3.2.2 Attributes Of Group Policy M echanisms

This section presents a list of attributes that a group policy mechanism may have. A
group policy mechanism is the mechanism that manages a collection of policies. The
definition of each attribute is presented below and examples are also given to illustrate

the concept.

Thisis the list of attributes that we will discuss below:

53

23. Organization Type 24. Transactional 25. Conflict Resolution

Method

26. Allow Paralléel 27. Policy Combination

Execution Method

A[23] Policy package organization type

In a system, there could be hundreds or thousands of policies. Some policy mechanisms
do not provide any means to organize the entire set of policies, it isjust aflat set. Some
other policy mechanisms offer away to organize the entire set of policies. A set of
policies can be organized into a package. The organization type can be hierarchical (e.g.,
CIM Core Policy, PDL [Kanada01l]), associated with classes (e.g., OCL, R++), an
independent module (e.g., AspectJ), or smply an unordered collection (e.g., Javas

exception mechanism).

A[24] Transactional
Policies in the same package are in one transaction, i.e., they are either all-executed, or

none-executed (e.g., ILOG JRules). Most policy mechanisms do not have this feature.

A[25] Conflict Resolution Method

Some policy mechanisms do no allow conflicts among policies at run time (e.g., AspectJ,
R++) (then conflicts shall be detected by tools, e.g., compilers).

Some policy mechanisms alow conflicts at run time, and the run-time conflicts are

resolved by either canceling one of the conflicting policy (e.g., based on priority or

54

recency in ILOG JRules) or delaying and retrying (the conflicting situation may
disappear after awhile) (e.g., PDL [Kanada0l]). The priority of the policy can be used to

decide which one to cancel or delay (e.g., ILOG JRules).

A[26] Allow Parallel Execution
Policies in the same package can be executed in parallel (e.g., PDL [Kanada01]), or only

sequentialy (e.g., R++, AspectJ).

A[27] Policy Combination Method

Two or more policies can be combined in various ways to form a new policy:
sequentialy, or in parallel, or conditional (one policy takes effect under one condition
and the other policy takes effect under another condition), or iterational (i.e., policies can

be applied repeatedly for a specified number of times).

Finally, the last attribute is about something that is external to the mechanics of the policy

itself.

A[28] Supported by Language or Tool
This attribute indicates whether this mechanism hasbeen supported by a language or a
tool. Thisis usualy a concern during experimental work in research and practical work in

the industry.

55

3.3 Positioning of Various Concrete Policy mechanisms

Now that we have the list of attributes that a policy mechanism may have, we can go
back to summarize the characteristics of various forms of policies that were discussed in

"Chapter 2".

The following table presents a summarization of all the characteristics of the various
forms of policies. Thissummarization helps us to select the right mechanism for our
particular problem right now. It shall also be able to direct building new and better policy

mechanisms for research and development in the future.

For reader's convenience, some key features of each mechanism are highlighted in bold

font.

Characteristics JAspect] |R++ Exception [DMTF CIM|PDL
Core Policy
Mode

[1]Domain generic generic |generic QoSpoalicy |red time
in networks |apps

[2]Operational |Yes Yes Yes Yes Yes
[3]Scope Loca Intra- Intra-object [Distributed |generic,
(intra object not
object or specified
inter-
object),
norx
distributed

56

[4]Policy Condition |Condition{Condition |Condition- |event-
Structure action -action |action action cond-
action
[5] Stateless Yes Yes Yes Yes No
[6]Prioritized Yes No No Yes Yes
[7]Presentation |Procedural |ProcedurajProcedural |Logical procedura
Style I | + logical
[8]OPI Type Positive [Positive |Negative |Obligation [Obligatio
Obligation |Obligatio |Permission |and +~- n
n permission
[9]Condition Program [System |System System System
Type syntax State State Sate state
[10] Software coding Coding |Coding Information |Specificat
development modedling |ion
phase language
[11]Active Yes, at yes yes yes yes
compile
time
[12]Triggering [Tightly Tightly [Tightly Tightly tightly
focus-ness focused focused |focused focused focused
[13]Triggering |Data Data- Data-driven |Data-driven |Data-
direction driven driven |bottomup [bottom-up |driven
bottom-up |bottom bottom- up
up
[14]Data locationjin memory (In In memory |(Persistent |persistent
memory distributed |distribute
d
[15]Run-time No no o Yes no
changeable
[16]Encoding Ascode |Ascode |Ascode Asdata As code
method
[17]Code- Yes yes n no no
generated
[18]Parameterize |Y es yes n yes Yes
d
[19]Delayable [No No No No Yes
upon conflict
[20]Cancelable [No No No No Yes
upon conflict
[21]Distributed [No no g} Yes yes
PDP and PEP
[22]Modularity JHigh medium |low Medium medium

57

[23]Policy Hierarchic{Within |Set Hierarchical|[Hierarchic
package al, C++ al
organisation type findepende |(class
nt moduleg
[24] Transactional]No No No No No
[25]Conflict Predefined |[None None Priority- Through
resolution precedence based monitors
method and (at run
"dominate" time)
keyword
[26]Allow No No No No Yes
parallel execution
[27]Policy Sequential |Sequentia [Sequential |Sequential |Sequential
combination I
method at run
time
[28]Language/To Jyes yes Yes(native [No no
ol supported (extending |(extendin |to C++ &
Java) gC++_ |Java)

Table 1 Positioning Various Policy M echanisms

Characteristics Table continued:

Characteristics JPonder COO PB OCL ILOG
JRules
[1]Domain RBAC |Generic |Policy- |Generic |Generic
(security) based
network
mgmt
[2]Operational Jobligationyes yes No, but |Yes
| yes, canbe
others. no simulated
by post-
condition

58

[3]Scope Generic, [intra Digtribute [Intra Inter-
not object d object obj ect
specified

[4]Policy Oblig: condition |event- Condition|Conditio

Structure event- action condition |/constraintn
cond- action (pattern)
action; -action
Other:
condition/
constraint

[5]Stateless yes yes Yes Yes Yes

[6]Prioritized no no Yes No Yes

[7]Presentation |declarativ|Logical + [ProcedurallUML + |Procedu

Style e Procedur logic ral
language |al

[8]OPI Type Obligatio|positive |Positive |Positive |Positive
n and +/-|obligation |obligation |or obligati
per missi negative |on
on, also permissio
refrain ns
(subject- (constrain
enfor ced) t) and
& obligation
delegatio (post
n condition)

[9]Condition System |System [system Sysem [System

Type state state State State state

[10] Software Specificat|Coding |Specificati|Analysis |Coding

devel opment ion on& &

phase Language implement | specificat

ation ion

[11]Active N/A, No N/A, Yes Yes
Specificat Sepcificati
ion on

[12]Triggering [not loosely |tightly n‘a Tightly

focus-ness specified |focused |focused focused

[13]Triggering |data- Goal- Data n/a Data

direction driven |driven driven driven
bottom- |top-down |bottom-up bottom-
up up

[14]Data locationjnot In persistent [Not in
specified |[memory |+ specified |memory

distribute
d

59

[15]Run-time not no Yes No no
changeable specified
[16]Encoding Asdata |ascode |asdata |ascode |ascode
method
[17]Code- not No no No yes
generated specified
[18] Parameterize Jyes yes Yes No yes
d
[19]Delayable Jno No no No yes
upon conflict
[20]Cancelable fno No yes No No
upon conflict
[21]Distributed |Not No yes No no
PDP and PEP specified
[22]Modularity [Medium |medium |medium |Medium |Medium
[23]Policy hierarchi|hierarchi [Hierarchic{Within [grouped
package cal, cal, extra |al class: into
organisation type |grouped (layer of Associate|'packets
into rolegjava d with
classes UML
model
elements
[24] Transactional]No No Yes No yes
[25]Conflict thru None priority- [Thru priority
resolution static based static ,
method analysis anaysis |recency,
of spec of pec |and
lexicogr
aphic
order
[26]Allow yes No Yes No No
parallel executior
[27]Policy sequential [sequential |branch+ |Not Sequenti
combination sequential |defined |al
method at run
time
[28]Language/To Jyes no no Yes (tool) [yes
ol supported (Tool) (tool)

Table 2 Positioning Various Policy M echanisms (Cont.)

60

3.4 Concluson

The detailed dissection of policy mechanisms provides a benchmark for future research
and a framework to understand policy mechanisms better. The list of attributes of a
generic policy mechanism helps the evaluation of any particular forms of policy
mechanisms, or serves as a checklist for the elicitation of requirements when you are
looking for a policy mechanism or developing a new policy mechanism. New policy
mechanisms might be required when the existing ones are not satisfactory for designing

and implementing NFRs in a particular domain.

The result of the analysis of a generic policy mechanism and the positioning of those
concrete forms of policy mecharnisms will be used in the next chapter to explain why
OCL is selected and why it needs to be extended, and to explain why Aspect]is used to

implement NFRs.

61

CHAPTER 4 POLICIESASARTIFACTSOF DESIGN AND
IMPLEMENTATION FOR NFRS

Let us be reminded that our objective is to achieve the Separation of Concern for NFRs at
the design level and the code level. Separation of Concernis one major principle in the
discipline of Software Engineering to manage the complexity of software systems
[Dijkstrar6]. At the requirement level, NFRs are considered separately. Our work is
intended to map this separation into the design level and code level, i.e., to create design
artifacts that are just for NFR concerns, and to aeate code modules that are just for NFR-
designs. Because the design and code for NFRs are modularized and separated, we can
easily understand the design and the code, easily trace across them, easily add or modify
NFRs (non-invasive adaptation and evolution), and potentially even reuse the
modularized design and code for NFRs (they can not be easily reused if they are scattered

in many parts of the system).

We use two forms of policy mechanisms as the artifacts for implementing non functional
requirements Policy Extension to OCL (PEOCL) at the design level and Aspect at the

code level.

OCL and AspectJ have been described in sections 2.2.1 and 2.2.3 respectively. This
chapter will discuss further the details of PEOCL and Aspect, why they are adopted to
represent design and implementation artifacts for NFRs, and how they can be used. The
sections will also illustrate through examples how NFRs are mapped to PEOCL Policies,

and then to Aspects.

62

4.1 Extending OCL With TheUML Meta Modd And The NFR

Ontology

This section describes and rationalizes PEOCL as the design artifacts for NFRs.

4.1.1 Why OCL And Why Extending OCL

For reader’ s convenience, the differentiating characteristics of OCL [OCL97] are

extracted from Table 2 in the previous chapter, and outlined in Table 3 below. The main

features are highlighted in bold font.

Characteristic Name

]CharacteristicVaIue For OCL

1. Policy package organisation type Within class: Associated with UML
model elements

2. Policy combination method at runtime [Not defined

3. Conflict resolution method Through static analysis of the spec

4. OPI Type Positive or negative permissions (constraint)
and obligation (post condition)

5. Scope Intra- object

6. Policy Structure Condition/constraint

7. Operational No

8. Prioritized No

9. Condition Type System state

10. Presentation Style UML + logic

11. Encoding method Ascode

12. Modularity Medium

13. Language/Tool supported Yes

14. Domain Generic

15. Software development phase Analysis & specification

Table 3 Differentiating Characteristics Of OCL

63

OCL ischosen as the base of the representation of design artifacts for NFRs, because:
It is associated with UML class diagrams, which is the mainstream notation for
representing design artifacts.
It uses a combination of UML and logic, so it isformal but not too formal. It does not
require the user of the notation to have a strong mathematical background like what
pure logical programming requires.
It is at the specificationlevel

It is not specific to aparticular domain

A study of the characteristics of OCL reveals that two characteristics of OCL are not
satisfactory for the purpose of representing design artifacts for NFRs. First, the
"condition type" of OCL islimited to "system state’, what is needed is "program syntax"
(see section 3.2 "Attributes Of Policy Mechanisms™ for the definition of "condition
type"). i.e,, only the values held by the attributes of the classes or the instances of classes
can be referenced. However the crosscutting nature of NFRS requires the ability to
reference a collection of model elements (classes, methods, attributes, etc.) ina UML
class diagram for functional features. We need the meta- programming- level expressive
power to do that. That is why the UML Metamode will be used as part of the OCL
expression. Second, OCL is not domain specific. That is good but also it is too generic
and inconvenient for describing many NFR level concepts, thus we will reuse the
ontology of NFR Framework and Quality Attribute Taxonomy. With those two
extensions to OCL, PEOCL (Policy Extension to OCL) can be used to easily describe

constraints imposed by NFRs on the UML class diagrams for FRs.

64

The next two sections will describ e NFR ontologies and the UML Metamodel. Examples

of using PEOCL will aso be given to illustrate the concepts.

4.1.2 Extending OCL With The NFR Ontology

"Appendix: NFR Ontology" presents a portion of the concepts in the NFR ontology that
are used in our case study (For the complete list, see [Chung00b]). The addition of the
NFR Ontology into PEOCL isintended to make it more convenient to express NFR's
constraints on FR's design artifacts. The terminology in the NFR ontology is allowed to

appear in PEOCL expressions.

For example, the following PEOCL policy uses the keyword "encrypted” from the NFR

ontology:

<designPolicy name="0utgoing Message Encryption Policy">
<category>Security</category>
<target> DataOutputStream::writeUTF(msg : String) </target>
<preCondition>
<oclExpression> encrypted (msg) </oclExpression>
</preCondition>
</designPolicy>

The above PEOCL expression specifies that:
The pre-condition of the method "writeUTF" of class "DataOutputStream™ is that the

parameter "msg" must be encrypted. "DataOutputStream™ is a class in the UML class

65

diagram for FRs. "encrypted" is aterminology from the NFR ontology and isused as a
predicate in this PEOCL expression. The exact definition of "encrypted” is already

decided by the NFR ontology.

4.1.3 Extending OCL With The UML Metamodel

The UML Metamodel [UMLMeta97] is used to define UML. It can be used to specify the
UML language constructs at the meta level. Example class namesin UML Metamodel
include: class, attribute, operation, etc. We reuse that work to gain the ability to represent
collections of UML model elements (e.g., a collection of classes, methods, or attributes).
Thisis essential to the crosscutting nature of NFRs, which usually refers to many

components of the system.

For example, the following PEOCL policy uses a class named "Method" from
UMLMetaModel's package " Core":

<designPolicy name="Trace All Method Calls Policy">
<category>Maintainability</category>
<target>
UML.MetaModel.Core.Method::invoke()
</target>
<postCondition>
<oclExpression>
(log - log@pre) -> notEmpty
</oclExpression>
</postCondition>
</designPolicy>

The above PEOCL policy specifies that:

The post condition of method "invoke" of class "UMLMetaModel.Core.Method" is that

66

the new log contains more information than the original log before calling that method.

Since UMLMetaModd.Core.Method is a meta-level class, al methodsin a UML Class

Diagram are instances of UMLMetaM odel .Core.Method. So basically this PEOCL policy

specifies that each method invocation should be logged.

4.1.4 PEOCL Syntax And Semantics

A PEOCL specification has one or many designPolicy specifications. A designPolicy has

an attribute "name", and has optionally these items: category, target, introduction,

preCondition, postCondition, invariant, and zero or more designPolicies. The following

UML diagram (Figure 6) presents a graphical view of this structure.

PEOCL Spec PerformanceCategory | MaintainabiliyCategory
? SecurityCategory ReliabiliyCategory
1.%
.) . LIMLEY
DesignPoli ‘{7 UsahilityCat [!
p— ey categony sabilityCatedgory |, 4 wetag?,
“name.sing Category 0CLaT]
-categany Categary
-target Target — |
-introduction-JavaClassMemberDeclaration TypelnUMLClassDiagram | |

-preCondition:OCLExpression
-postCondition: OCLExpression
-invariant OCLExpression

=
T

target __| Target

OperationinUMLClassDiagram

praCandition postdondition

0.1

0.1 0.1

QCLExpression

invariant

0 2| yavaClassMemberDeclaration | | [Java0o]
introduction
[DCLAT,
MNFR Ontology]

Figure 6 UML Class Diagram For PEOCL DesignPolicy Structure

67

The following DTD? outlines the syntax of PEOCL?.

<l-- PEOCL DTD -->
<IDOCTY PE peocl [
<IELEMENT peocl (designPolicy+)>

<IELEMENT designPolicy (category?, target?, introduction?, preCondition?,
postCondition?, invariant?, designPolicy*)>

<IATTLIST designPolicy name CDATA #REQUIRED>

<IELEMENT category (#PCDATA)>

<IELEMENT target (#PCDATA)>

<IELEMENT introduction (#PCDATA)>

<IELEMENT preCondition (oclExpression>

<IELEMENT postCondition (ocl Expression)>

<IELEMENT invariant (oclExpression)>

<IELEMENT oclExpression (#PCDATA)>
1>

The DTD defines the high level structure of the PEOCL specification.

The category of a PEOCL DesignPolicy can be (but not limited to) "performance”,

"security”, "maintainability”, "reliability”, and "usability".

Thetarget of a PEOCL designPolicy is either the name of atype (e.g., class, interface) or
the signature of an operation in the UML class diagram. The types and operations in the

UML Metamodel can also be used as discussed in the previous sections.

1 XML Schema can be used to define the syntax as well. The syntax hereis smple

enough to be easily represented by either notations.
2 All the XML specification has been checked by using XML Writer [XMLWriter02] to

ensure the well-formedness and validity with respect to the given DTD.

68

Theintroduction contains some Java class member declaration. "Introduction” is
optional. Sometimes we have to add new attributes or methods into the existing classes to
express design for newly added NFRs. "Introduction™ provides us with away to add new
members without touching the original class diagrams for functional features, and allows
us to put all specification mapped fromthe same NFR in the same PEOCL policy. The
following DesignPolicy is an example of “introduction”. In order to support a newly
added NFR: role-based GUI access control, we have to add a new data member in the
existing class "LoginDialog" (see the case study for more details).
<designPolicy name="Introducing logingRole">
<category>Security</category>
<target>L oginDial og</target>
<introduction> String loginRole; </introduction>
</designPolicy>
The syntax of the variable or method declaration in "introduction” follows that of Java

class member declaration.

The preCondition, postCondition, and invariant are all expressed in OCL expressions.
[OCL97] has the BNF definition for OCL Expressions. The predicates from NFR
ontology can be used within OCL expressions. The preCondition, postCondition, and

invariant are all optional.

Finally, the designPolicy can be a composite policy, i.e., it can have some other

designPolicies as sub-policies. For example, the following designPolicy is a composite

69

one:
<designPolicy name="Message Encryption Policy" >
<category>Security</category>
<designPolicy name="0Outgoing Message Encryption Policy"/>

<designPolicy name="Incoming Message Encryption Policy"/>
</designPolicy>

4.1.5 Usageof PEOCL

Given aUML class diagram as the design artifact for FRs, NFRs can be mapped to
invariant on those classes, pre and post conditions on a collection of operations and

methods. PEOCL can be used to express invariant, pre and post conditions.

The examples in the previous section already demonstrated that PEOCL can be used to
express the pre and post conditions on a collection of methods. We will give another

example below to show how to use PEOCL to express the invariant in a class.

<designPolicy name="GUI Access Control Core Policy">
<category>Security</category>
<target>ChatroomClientWindow</target>
<invariant>
<oclExpression>
self.loginDialog.loginRole = "admin" implies
self.menultemManageUsers.enabled = true
</oclExpression>
</invariant>
</designPolicy>

The above PEOCL policy specifies that:
If the user'slogin role is "administrative role", then the "ManageUsers' menu item is

aways enabled (See the case study in the next chapter for more details).

70

4.2 Mapping NFRsto PEOCL Policies

Now that we have discussed what PEOCL is and how to use it, we can discuss how to
map NFRs systematically to PEOCL design policies. We are mainly using the work from
NFR Framework [Chung00a, Chung00b, Gross00, Chung94] and Quality Attributes
Taxonomy [Babacci95, Kazman99, Kazman00]. "NFR framework™ provides the notation
to represent the refinement process. "Quality Attributes Taxonomy™ provides the possible

refinements.

The steps to perform the mapping from NFRs to PEOCL policies are:

Refine high level NFRs into detailed NFRs if necessary
Decide the design strategy to meet the detailed NFRs: Should the design artifact be in
design policies that are separated from the original design artifacts or should the new
design modify the original design artifacts directly?
If the strategy is to use separate design policies, then

Represent the design in design-policies by using natural language.
Else

Follow the traditional object oriented methodology.
Refine the design policies in natural language into more detailed design policies if
necessary
Represent the natural language version of policy in PEOCL design policies

Map the PEOCL design policies into aspects. This last step will be discussed in the

71

following sections.

Figure 7 illustrates the mapping procedure from NFRs to PEOCL design policies

graphically.
Refine high level NFRs into detailed
NFRsif necessary
What is the design
strategy to meet the
detailed NFRs?
Separate Design Policies Modify the original design artifacts
directly
Represent the design in design-policies by Follow the traditional object oriented
using natural language methodol ogy

Refine into more detailed design policies
if necessary

Represent the natural language version of
policy in PEOCL design policies

Map the PEOCL design policiesinto
aspects

Figure 7 Mapping From NFRs To PEOCL Design Policies

Figure 8 illustrates an example of this mapping process. This example is taken from our

72

case study (see chapter 5 for more details).

The high level NFR is "security”, i.e., the chat room system shall be secure. Based on the
‘concerns and 'methods' in the Quality Attribute Taxonomy (reference "Figure 3 Security
Taxonomy" in section 2.1), we refine the security NFR into four detailed NFRs for the
chat room system:
GUI Access Control: Only those GUI items that the user has permission to use are
enabled, e.g., non-administrative user cannot modify other user accounts, so the user
management GUI is disabled for non-administrative users
Message Encryption: Messages transmitted over the network shall be encrypted
Login/Logout: Users shall go through a login procedure which prompts for user name
and password, and only authenticated users can proceed to use the chat room

Block out user: The administrative user shall be able block out a bad user

We decide that only "GUI Access Control" and "Message Encryption” will be mapped to
design policies. We will modify the original design and code to meet the other two NFRs,
because they can be implemented in relatively straightforward independent modules by
using the traditional object oriented method (they could be done through policy

mechanisms as well, but there is no obvious benefit in doing so).
Then the "GUI Access Control" and "Message Encryption” NFRs are mapped to design
policiesin natural language, asillustrated in "Design Policy 1.1" and "Design Policy 1.2"

respectively (Figure 8).

73

The lengthy details of the PEOCL policies are omitted for clarity. Section 5.5 will

provide the complete PEOCL design policies for chat room NFRs.

NFR 1.1
GUI
Access
Control

NFR 1.2
Message
Encryption

Design Policy 1.1

Admin-> enableall;

Gold - disable user mgmt
Silver > disable user mgmt
& encryption

Bronze - disable
user/friends mgmt and
encryption

Design Policy 1.2
Encrypt every
message before
sending onto the
network; Decrypt
every message upon
receiving

NFR 1.3
Login/log
out

NFR 1.4
Block out

user

PEOCL Design Policy
<designPolicy
name="GUI Access
Control" ...

PEOCL Design Policy
<designPolicy
name="M essage
Encrption” ...

Modify
original object
oriented design

Modify
original object
oriented design

Figure 8 Design For Security NFR

74

4.3 AspectsAnd Abstract Aspect Library For NFRs

4.3.1 What Are Aspects

For reader’ s convenience, the differentiating characteristics of AspectJ are extracted from

Table 1 in the previous chapter, and outlined in Table 4. The main features are

highlighted.

Characteristics

1. Policy package organisation type

|AspectJ
Hierarchical modulesthat support
inheritance and information hiding

2. Policy combination method at run time |Sequential

3. Conflict resolution method Predefined precedence and "dominate”
keyword

4. OPI Type Positive Obligation

5. Scope Local (intra-object or inter-object), non
distributed

6. Policy Structure Condition-action

7. Operational Yes

8. Prioritized Yes

9. Condition Type Program syntax

10. Presentation Style Procedural

11. Encoding method Ascode

12. Modularity High

13. Language/Tool supported Yes

14. Domain Generic programming

15. Software development phase

Coding, as extension to Java

Table 4 Differentiating Characteristics of AspectJ

An Aspect is arelatively new unit of programming module that crosscuts traditional

boundaries like subroutines, functions, procedures, methods, classes, and packages.

Section 2.3.1 has described some of the major concepts in AspectJ, an aspect-oriented

75

extension to the Java programming language.

The main feature or strength of this new modularity "Aspect” isits "crosscutting"
characteristic. "Crosscutting” is with respect to the main modularity "class' in the current

mainstream methodology "Object Oriented Method".

4.3.2 Why Aspects

According to the object-oriented methodology, the functional requirements are modeled
into classes, and those classes will be further refined into design level classes, and
eventually implemented by classes in an object-oriented programming language. The

fundamental modularity of object oriented method is"class' [Martin98].

A NFR covers typically many classes of the system. A PEOCL expression can specify a
policy on a collection of classes and/or methods, the expressive power introduced by the
addition of UML metamodel. Aspect’s crosscutting power fits well as a mechanism to
implement PEOCL policiesfor NFRs. In particular, we will use Aspectdin all our
examples and case study. As listed in "Table 4 Differentiating Characteristics of
AspectJ', Aspect] supports "programsyntax” as "condition type" (see section 3.2), and it
has extremely high modularity, it supports "aspect” as a unit of programming that has
information-hiding and inheritance features. AspectJ has also managed to put "aspect” as
aminor extension (syntax-wise) to the popular object oriented language Java. " Aspect”

(and in particular: AspectJs aspect) fitsinto our needs of implementing PEOCL policies

76

for NFRs because all the three things -- NFR, PEOCL, and Aspect -- have a common

characteristic: crosscutting.

4.3.3 A Generic Aspect Library For Common NFR Concerns

Similar to reusing NFR Ontology and UML Metamodel to easy the specification of
design artifacts for NFRs, we want to find a way to ease the coding of aspects. We

developed an abstract aspect library for common NFR concerns, this shall help the

mapping fromPEOCL policies to aspects and promote reuse of generic aspects.

This section presents some sample abstract aspects that many distributed systems can
reuse when implementing NFRs. They are generic because they do not reference to any

domain specific concepts. These abstract aspects will be reused in our case study as well.

The abstract aspects presented here are "Encryption Aspect”, "Timing Aspect”, and

"Logging Aspect”. They address issues in common NFRs " Security", "Performance”, and

"Maintainability" respectively.

4.3.3.1 Encryption Aspect

The Encryption Aspect helps to implement the Security NFR by ensuring the
confidentiality of the message sent through a network. The Encryption aspect defines two

pointcuts: sendMsg and recvM sg. It encrypts every outgoing message and decrypts every

77

incoming message. Since both the sending and receiving ends behaviours are modified

by this aspect, Encryption aspect shall be always shared between the client and the server.

The encryption aspect defines two abstract pointcuts sendMsg and recvM sg, and add
advice around both pointcuts. "proceed” is a keyword in Aspect], it means "proceed to
execute the origina pointcut”" [AspectJ02]. Thisis how to read the advice around
sendMsg: encrypt the input parameter "msg" first, then proceed to execute the pointcut
with the encrypted parameter. This is how to read the advice around recvMsg: proceed to
execute the pointcut normally and get the return value, decrypt the return value and return
it. Basically the first advice modifies (encrypts) the input and the second advice modifies

(decrypts) the return value.

public abstract aspect BaseEncryption

{
public abstract pointcut sendMsg(String neg);
public abstract pointcut recviMsg();

public void around(String nmsg): sendMsg(mnsg) {
String encryptedMsg = encrypt (nsg);
proceed(encrypt edMsg) ;

}
public String around(): recvMsg() {
String result = proceed();
String decryptedMsg = decrypt (result);

return decryptedMsg;
}

public abstract String encrypt(String t);

public abstract String decrypt (String t);

The following aspect “Encryption” is derived from “BaseEncryption”. “Encryption”

78

aspect uses BlowFish encryption agorithm [Blowfish02] to encrypt and decrypt
messages. Blowfish was designed as afast, free dternative to existing encryption

algorithms (e.g., DES).

public abstract aspect Encryption extends BaseEncryption

{

/'l uses Bl owFi sh encryptor algorithns
Bl owFi shEncryptor encryptor;

/**

* encrypt a string by using Bl owri sh Encryptor

* @eturn java.lang. String

* @aramm java.lang. String

*/

public String encrypt(String t) {
String m = encryptor.encryptBl ock(t);
return m

}
/**

* decrypt a string by using Bl owri sh Encryptor
* @eturn java.lang. String
* @aram mjava.lang. String
*/
public String decrypt (String t) {
String m = encryptor.decyptBl ock(t);
return m

To reuse this abstract aspect, a derived aspect can specify the concrete pointcuts for
sendM sg and recvM sg. Alternative encryption algorithms can aso be adopted by

overriding the encrypt and decrypt methods.

4.3.3.2 Timing Aspect

The Timing Aspect helps to implement the performance NFR by measuring the duration

79

of messaging and providing enforcement pointsin its interface. The Timing aspect
defines two pointcuts: sendMsg and recvMsg. It adds timestamp to every outgoing
message and the timestamp is removed upon receiving the message. Since both the
sending and receiving ends' behaviours are modified by this aspect, The Timing aspect

shall be always shared between the client and the server.

The two aspects Timing and Encryption are defined on potentially the same set of
pointcuts. In order to avoid the potential undefined order of execution, we specify that
Timing aspect dominates Encryption aspect. It means that when both aspects specify
advice around the same method, the advice from Timing aspect will be triggered first (but
not necessarily completed first, especialy if it calls proceed(), proceed() will make the
rest of the pointcut complete first and then come back to execute the statements after

proceed()).”

The advice around sendMsg adds time stamp into the input parameter "msg". The advice
around recvMsg removes the added time stamp from the return value, and calls

checkTimestamp method with the time stamp as the input parameter.

public abstract aspect Tim ng
dom nates BaseEncryption {

public abstract pointcut sendMsg(String nsg);
public abstract pointcut recvMsg();

public void around(String nsg): sendMsg(mnsg) {
String tinmeStanpedMsg = tinmeStanping (nsg);
proceed(ti meSt anpedMsg) ;

3 “dominates’ and “proceed” are keywords from AspectJ

80

public String around(): recvMsg() {
String result = proceed();
String nsg = renoveTi mestanp (result);
return nsg;

}
/**
* Time-Stanping a string
* @eturn java.lang. String
* @aramt java.lang.String
*/
public String tinmeStanping(String t) {
/* actual inplementation is onmitted for clarity */

}

/**

* renove tinme stanp fromthe string

* validate the during of sending the nessage

*

* @eturn java.lang. String

* @aramt java.lang.String

*/

public String removeTi mestanp (String t) {
/* actual inplementation is omtted for clarity */
String timeStanmp = /* timestanp extracted fromt*/
String ret = /* t minus the tinestam */
CheckTi mestanp (tineStanp);
Return ret;

}

/**

* The derived aspect could override this method

* and provide the actual enforcenent for constraints on
* timng to neet the application-specific performance NFRs
*

* @eturn java.l ang. bool ean

* @aramts java.lang. String

*/

publ i c bool ean checkTi nestanp (String ts) {

/* actual inplementation is omtted for clarity */
}

}

To reuse this abstract aspect, a derived aspect can specify the concrete pointcuts for
sendMsg and recvM sg. And then override the method check TimeStamp() to perform the

desired enforcement on the timing.

81

4.3.3.3 Logging Aspect

The following MethodTracing aspect helps to implement the maintainability NFR by
providing trace for the execution of methods. i.e., the begin and end of the method
invocations are logged. Log4J is used to provide the basic logging functionality

[Log4Jo2].

The advice before the pointcut "callMethods' logs a message saying "Enter method",
followed by the method's signature. The advice after the pointcut "callMethods' logs a

message saying "Exit method", also followed by the method's signature.

public abstract aspect MethodTracing

{
public abstract pointcut call Methods();

/'l use Logger from | og4j
private static Logger |ogger =
Logger . get Logger (“ Met hodTraci ng”) ;

/'l 1ogging |evel
private static int |ogLevel = 0;
i nt getlLogLevel () {

return | oglLevel;

voi d setLogLevel (int level) {

| ogLevel = Ilevel;
}
before (): call Met hods()
if (logLevel ==1) {
| ogger.info("Enter nethod: " +

t hi sJoi nPoi nt StaticPart.
get Si gnature().

get Name()) ;
} else if (logLevel == 0) {
| ogger.info("Enter nmethod: " +

t hi sJoi nPoint StaticPart.
get Signature());

}

/] trace the exit of a method invocation
after (): call Methods()

82

if (logLevel ==1) {
| ogger.info("Exit nmethod: " +
thi sJoi nPoi ntStaticPart.
get Si gnature().
get Name()) ;
} else if (logLevel == 0) {
| ogger.info("Exit nmethod: " +
t hi sJoi nPoi nt St ati cPart.
get Si gnature());

The implementation of MethodTracing aspect combines the strengths of log4J and
Aspectd. The logging level can be re-configured at run-time, through a configuration file.
The logging configuration fileisin XML. It specifies the destination of logging (e.g., a
file name or console) and logging level for each logger. An example of the logging

configuration file:

<?xm version="1.0" encodi ng="UTF 8" ?>
<! DOCTYPE | og4j : confi gurati on SYSTEM "I og4j .dtd" >
<l og4j : configuration>

<l-- the standard appender -->
<appender
name="defaul tFil e"
cl ass="com | og4i . Rol | i ngFi | eAppender W t hPat hCr eat e" >
<param name="Fi | e"
val ue="./1ogs/ Test Message. | 0og" />
<par am nanme="MaxFi | eSi ze"
val ue="100000KB" />
<par am nanme=" MaxBackupl ndex"
val ue="3" />
<| ayout
cl ass="com | og4i . Conpr ehensi vePat t er nLayout " >
<param
nanme="Conver si onPattern"
val ue="% i\t %p\t %\t %o\t %\t Yerdmn" / >
</l ayout >
</ appender >

<l —capture all debug-Ievel and higher for
Met hodTraci ng | ogger -->
<cat egory nane=" Mt hodTraci ng"
cl ass="com | og4i . Logger" >

83

<priority val ue="debug"/>
</ cat egory>

<l-- Root definitions -->
<r oot >
<priority value ="error"/>
<appender-ref ref="defaultFile" />
</root>

</l og4j:configuration>
<l-- eof -->

To reuse this abstract aspect, a derived aspect can specify the concrete pointcut
“calMethods’. For example, “callMethods’ can be defined as calls to a particular
method, or a particular set of methods, or every method in a package, or every method in

every class, etc.

4.3.4 Mapping PEOCL Policies To Aspects

The mapping from PEOCL policies to aspects is arelatively straightforward process. It
is not totally a mechanical process, intelligent decisions have to be made during the
mapping process (e.g., which of the 'before, 'after’, or ‘around' advice should be used).
But there are some guidelines or informal rules that can be followed. The important parts
of aPEOCL policy are "target”, "introduction”, "preCondition", "postCondition", and

"Iinvariant”. Their mapping rules are outlined below.

Thetarget of a PEOCL design policy can be mapped to a pointcut of an aspect.
Theintroduction of a PEOCL design policy can be mapped to an introduction of an

aspect.

The preCondition, postCondition, and invariant of a PEOCL design policy can be

84

mapped to advice on the pointcut as mapped from the design policy's target.

The preCondition, postCondition and invariant are all OCL expressions. If the OCL
expression filters on the targets as well then the filter in conjunction with the target of
the PEOCL design policy can be mapped to a pointcut of an aspect. An example of
OCL expression filters on the targets:

(UML.MetaModel.Core.Method.name = " setA” or

UML.MetaModel.Core.Method.name = " setB”)
implies

<OCL_expression_X>.

This overall OCL expression specifies that the <OCL_expression_X> should be

true if the method names are either setA or setB.

The following example demonstrates how to map policies expressed in PEOCL to
Aspects. We will use the abstract aspect "Encryption' in the previous section to
implement the PEOCL encryption policy presented in section 4.1.2. The PEOCL design

policy for encryption is repeated below for reader's convenience:

<designPolicy name="0utgoing Message Encryption Policy">
<category>Security</category>
<target> DataOutputStream::writeUTF(msg : String) </target>
<preCondition>
<oclExpression> encrypted (msg) </oclExpression>
</preCondition>
</designPolicy>

The above PEOCL design policy can be mgpped to an aspect

" SocketM essageEncryption™:

aspect Socket MessageEncryption extends Encryption {

85

public pointcut sendMsg(String nseg):
call (void java.io. DataQut put Stream witeUTF
(String)) && args(msg) ;

In this example, al we need to do is to introduce a new aspect

" SocketM essageEncryption”, which inherits from the abstract aspect “Encryption”.
SocketM essageEncryption aspect specifies the two pointcuts sendMsg and recvMsg to be
the calls to two socket operations writeUTF and readUTF from java.io package. Every
message through the socket interface will be encrypted before sending and decrypted

after receiving.

The next chapter will present a case study that uses the methodology discussed in this

chapter.

86

CHAPTER 5 CASE STUDY -- THE DEVELOPMENT OF A
CHAT ROOM SYSTEM

This chapter presents a case study on using the policybased methodology to create
modularized design and implementation artifacts for NFRs. The methodology is

illustrated through the development of an on-line chat room client-server system.

The chat room system was implemented first without the NFRs by using the traditional

object-oriented method. NFRs were added gradually as the implementation went on.

The main artifacts from object-oriented method are presented first because they will be
referenced when implementing NFRs. After the Non Functional Requirements are
introduced, they will be expressed as policies at the design levdl, first in plain English,

then in PEOCL. The PEOCL policies then are mapped to Aspects.

5.1 Design by Using Object-Oriented M ethod

5.1.1 User-oriented Requirements

Thisis a description of the initial requirements of a chat room system at the highest level,

in an informal plain English form:

A chat room provides a communication facility for multiple users connected

through a network. Each user can type in a message and send the message to dll

87

other usersthat are currently using the chat room. Each user also sees all the

messages sent by any other users in the chat room.

5.1.2 Architectural Design Decisions

Architectural design decisions impacts NFRs. As stated before, we are not pursuing this
research direction, as they have been addressed very well by [Chung00a, ChungOQb,
Gross00, Kazman99, Kazman00, Weiss01]. So these high level architectural decisions

are presented below as a given from the user.

The following diagram (Figure 9) illustrates the network view of the overall system.

(‘;hat r(;om Chat room
client client B
@
Chat room
Server

Figure 9 Network View of the Overall Chat Room System

It will be a client/server system. There is a client system on every end user’s machine.
There is a server system on the network that connects to and communicates with all the

client systems.

The client system sends messages to the server when the user enters a message. The

88

client system uses a separate thread to receive and display messages from the server.

The server is a multithreaded application that accepts client connections and

processes the received messages concurrently.

5.1.3 Main Use Case “ Send a M essage”

The following table outlines the main use case “ Send a Message”. It has 1 success

scenario and some failure scenarios.

Use Case No.

001

Use Case Title

Send a message

Pr econditions of
theuse case

The chat client system is running and connected to the chat server
system successfully

Post conditions
of the use case

The one line message has been sent to the receiving window of every
client system that is currently connected to the chat server system

(success

scenario)

Use Case Starts | The user typesin a one-line message in the edit window and then hit
when the‘return’ key

Normal Flow

The message is sent to the chat server
The chat server broadcasts the message to every client that is
currently connected to the chat server system

Alternate Flow

The message can not be sent to the chat server

#1: Fail tosend | The user is notified "failure in sending message to server

message to

server

Alternate flow The message is sent to the chat server

#2: Server fails | The chat server failed to broadcast the message to every client that is
to broadcast currently connected to the chat server system

message The chat server notifies the originator of the message

The originating client system notifies the user "the server failed to
broadcast the message”

Table 5Use Case” Send a M essage”

89

5.1.4 Overview of Classes

“Figure 10” and “Figure 11" present the classes in the Chat Room system.

The chat room server isimplemented by two classes. ChatServer and ChatHandler (see
“Figure 10”). ChatServer is the main program, it spawns a new thread for each client
connection. The new thread runs class ChatHandler. A static member "handlers’
maintains all the instances of ChatHanlders that are currently active. ChatHandler
maintains the two way communication channels ("in" and "out") with the client through a
"socket" connection. The main functional feature of ChatHandler is to "processMessage”,

i.e., to "broadcast" the message to all the other clients upon receiving a message.

Chat Ser ver Runnabl e

<<use>> Chat Handl er
Chat Server (port:int) — — — — — lsocket : Socket

+nai n(args: String []): voi

i n: Dat al nput Stream
out : Dat aQut put St ream

handl ers: Vect or =new Vect or ()

user s: Vect or =new Vector ()

firstTi ne: bool ean=t r ue

Chat Handl er (s: Socket)

+Chat Handl er ()

start():void

+init():void

+run():void

pr ocessMessage(message: String): voi d

get User I ndex(id: String):int
getUserList(): String

val i dat eUser Passwor d(i d: Stri ng, passwd: St
br oadcast (message: String): void

Figure 10 Class Diagram for Chat Room Server

90

The Chat room client isimplemented by six classes (see “Figure 11”). ClientController is
the main program, it establishes socket connection with the ChatServer, and then
launches the LoginDialog. LoginDialog is responsible for authenticating the user and
then launches the ChatrommClientWindow, which is the main window for the chat room
client application. The ChatroomClientWindow can launch the other three dialogs:
UserlistDialog, FriendListDialog, and PasswordDialog. The three dialog windows

support the query and modification on users, friends, and password respectively.

j avax. swi ng. JDi al ':Ij QientQntrol ler

FriendLi stDO al og

I:Ij JDi al og

Passwor dOi al og

+ClientController(_host:Stri
+connect () : bool ean

+Passwor dDi al og() +Fri endLi st Di al og()
+Passwor dDi al og(_i n: Dat al npt +Fri endLi st Di al og(owner: j ave
+changePasswor d(acti onEvent: +mai n(args: j ava. | ang. String[

+mai n(args: String[]):void

host:java.lang. String

in:java.io. Datal nput Stream
out:java.io. DataQut put Stree

+mai n(args: java.l ang. Stri ng[
| vj Event Handl er
in:java.io. Datal nput Stream port:int

out:java.io.DataCutput Stree

|
\i
=5 | avax. swi ng. J0i al (] j avax. sw ng. JFra] javax. swi ng. JDi al
WerListOal og Runnabl e Logi nO al og

Chat roon@ i ent Wndow +Logi nDi al 0og()

+User Li st Di al og()
+User Li st Di al og(_i n: Dat al npt

+Chat r oonCl i ent W ndow() +Logi nDi al og(_i n: Dat al nput St

+addUser (acti onEvent: j ava. av
+bl ockUser (acti onEvent:j ava.

+del et eUser (actionEvent : j ave j&——

+mai n(args:java.lang. String[

+request User Li st (): void

| vj Event Handl er

in:java.io. Datal nput Stream
JLi st Of Users: j avax. swi ng. JL
out:java.io. Dat aQut put Stree

+Chat r oonCl i ent W ndow(_i n: De
+mai n(args: java. |l ang. String[

+processMessage(message: Stri
+run():void

+sendMessage(e: j ava. awmt . ever
+sendToAl | Sel ect ed(acti onEve
+SendToFri endsSel ect ed(acti ¢
+start():void

+aut henti cate(actionEvent:je
+aut henticate(acti onEvent:je
+get Logi nRol e() :j ava. | ang. St

+mai n(args: java.l ang. Stri ng[
+set Logi nRol e(newLogi nRol e: j

| vj Event Handl er

| vj Event Handl er

in:java.io. Datal nput Stream
out:java.io. DataQut put Stree

in:java.io.Datal nput Stream
nmenul t emVanageFri ends: j avax
menul t emVanageUser s: j avax. €
out:java.io.DataQutput Stree
radi oBut t onSendToAl | : j avax.
radi oBut t onSendToFri ends: j &

Figure 11 Class Diagram for Chat Room Client

91

5.1.5 Sequence Diagrams

This section presents some of the sequence diagrams to illustrate the design of the chat

room system.

Figure 12 illustrates the sequence from making a connection to sending a message. Both
activities are presented in the same diagram for easier correlation. When the user
launches the chat room client application, the chat client makes a connect request to the
chat server, the chat server then spawns a new thread chat handler to deal with the
connection withthis particular client. The message sending and GUI are in separate
threads to avoid freezing the GUI activities. When the chat handler receives a message, it
broadcasts it to every active chat client. The sending client will receive this broadcasted

message as well, and display the message in its own GUI.

92

The chat senver
ChatServer

>Ho

=
@
@
=

Chat Client A

1 main(Btring[vaid - launch ChatClient

1.1: conect request

one thread per cnnnectmn

ichat server.msgHandler

1.1.1: =constructor={) -- create thread

ChatHandler

2 create thread

v

3: actionPerormediactionEveni:void -- return key

4! broadeast received message

-

)
All ohjects are cuncurren

Figure 12 Sequence Diagram -- Send a message

"Figure 13" illustrates sequence diagram for "block out a user" activity. The interactions
are among the administrative user, chat client X, and the ChatHandler on the server side.
When the user clicks the "block out" button, the chat client sends the user name in the
blockout request message to the chat handler, the chat handler then verifies and processes

this message and sends back a response, finally the chat client displays GUI feedback to

93

the user.

Chat Client ¥ chat senver.msgHandler
ChatClient ChatHandler
Adminliser X

|
|
actionPerformediActionEventivaid -- blockOut plitton

0

send user name

|
I -)
regponse: {blocked, unknown user} ieﬂwfdd user o blockedUserlist

| T

| any user in the hlockedUserlList
| does not recy any messges, its
messageswon'the sentto
anyone either. its passwd will
he always invalid fram now an.

I:Ij display feedhack

Figure 13 Sequence Diagram — Block Out a User

"Figure 14" illustrates sequence diagram for "change password" activity. The interactions
are among a user, the chat client, and the ChatHandler on the server side. When the user
clicks the "change password" button, the chat client will send to the chat handler the user
name, old password and new password in the request message. The chat handler verifies
and processes the request, and then sends back a response. Finally the GUI will display

the feedback to the user.

94

Chat Client A chat server.msgHandler
ChatZlient ChatHandler

User A

|
|
actionPerformedidctionEventyvoid - changePagswd button

: a

| send =name, ald & new passwd=

wetify and update passwd

|
|
response: {changed, invalid old passwd, illformed new passwd}
|
|

|
tlj display feedback
|
|
|
|
1

Figure 14 Sequence Diagram — Change Password

"Figure 15" illustrates sequence diagram for "login" activity. The interactions are among

auser, the chat client, and the ChatHandler on the server side. When the user clicks the
"login" button, the chat client will send to the chat handler the user name and password in
the request message. The chat handler verifies and processes the request, and then sends

back aresponse. Finaly the GUI will display the feedback to the user.

95

Caht Client A chat server. msgHandler
ChatClient ChatHandler

Mo

=
(]
2]
=

actionPerformed{ActionEvent)void --' login' butto

|
|
|
Send =usertame, password= |
|
|
|

I:]j werify, add user into active list

invalid user, orwvalid user + permissions

Ijj disable GL iterns based permissions

Figure 15 Sequence Diagram -- L ogin

5.2 Chat Room Client Application Graphical User Interface

This section presents some of the GUI windows of the client application in the final chat
room system (with all NFRs added), to help the reader understand the overal

requirements better.

96

User Id: | |

Password: | |

Login Cancel

Figure 16 Authentication Window

"Figure 16 Authentication Window" is the very first window the user sees when
launching the chat room client. Once the user name and password are authenticated, the
authentication window disappears and the next window is shown in "Figure 17 Chat

room client application main window".

E‘i Chatroom Client ; ;lglﬁl

File Confiy Help

Mes=sages

Hello Beckyl

Haou are you?

Hello Adam, I'm fine.

|I propose thatwe use standard 123 to solve that problem

[_| Message encrypted

% Send to all i) Send to friends only

Figure 17 Chat room client application main window

97

The chat room client main window consists of (from top to bottom in Figure 17) amenu
bar, an incoming message display area, an outgoing message line, and an option pane.
The "Config" menu has three sub menu items "Manage Users', "Manage Friends', and
"Change Password", as shown in "Figure 18 Sub menu items for 'Config™. The incoming
message display area displays all messages from all users of this chat room, including
this user's own message. The outgoing message line is where the user can typein its own

message. The message will be sent when return key is hit.

Egﬁ Chatroom Client -0l |

File | Config | Help

| Manage Friends
ﬂ' Manage Users
He
Hi Change Password
Hello Adarm, I'm fine.

|I propose that we use standard 123 to salve that prahblem

[_] Message encrypted

% Send to all i Send to friends only

Figure 18 Sub menu items for 'Config’

The option pane has a check box that specifies whether the message should be encrypted
or not. This check box is only available for gold and administrative users. The option

pane a so has two radio buttons that specify whether the message should be sent to

98

everyone in the chat room or just to the friends in the friend list. This option is not

available to bronze users.

"Manage User" menu item will trigger "Figure 19 User List Management Window",
where alist of <user, password, role, email> is displayed. New users can be added into
the list. Existing users can be modified, or deleted from the list, or blocked out. A user
can not login any more (authentication always fails) if it is blocked out. The "Manage

Usar" menu item is disabled for all non-administrative users.

E%User List Management Dialog |

List of Users:

adam aaa adminRole adamig@carleton.ca
becky bbb goldService beckyi@carleton.ca
chris coc silverService chrisig@carleton.ca
dehby ddd hronzeService debby@carleton.ca
emily eee goldService emily@carleton.ca

Delete Block

New user id: | |

Hew user password: | |

Role: | |

Email: | |

Add new user

0K

Figure 19 User List Management Window

99

"Change Password" menu item will trigger "Change Password Window", where this

user's password can be updated.

"Manage Friends' menu item will trigger "Friend List Management Window", where a
list of friendsis displayed. Friends can be added or deleted. "Manage Friends' menu item

is disabled for bronze users.

5.3 Adding Non Functional Requirements

Thisisthe list of NFRs that we need to implement:

NFR #1, Security NFR:
User shall be limited to use features as permitted by his or her role

The message must be sent onto the network in a secure format
Only registered users can enter the chat room

Administrative user can block out a 'bad' user

NFR #2, Performance NFR;:

The messages must be received in a reasonable amount of time, e.g. within 2 seconds

NFR #3, Accounting NFR:

The user shall be charged 1 cent per minute

100

NFR #4, Maintainability NFR:

All method calls shall be logged

The next section will describe how the NFRs are mapped to policies and then to aspects.

5.4 Mapping from NFRsto PEOCL Policiesto Aspects

This section presents the overview picture of how NFRs in section 5.3 are further refined
into detailed NFRs, and then expressed as design-level policies (i.e., PEOCL design
policies), and finally implemented as code-level policies (i.e., aspects) or traditional Java
code. This section only provides a high-level view. Section 5.5will present the design
policies formalized in PEOCL form. Section 5.6 will present the detailed code-level

policies(i.e., the actual aspect code).

101

NFR 1.1 NFR 1.2 NFR 1.3 NFR 1.4

GUI Message Login/log Block out
Access Encryption out user
Control
Design Policy 1.1 Design Palicy 1.2
Admin-> enableall; Encrypt every
Gold - disable user mgmt message before
Silver > disable user mgmt sending onto the
& encryption network; Decrypt
Bronze - disable every message upon
user/friends mgmt and receiving
encryption
PEOCL Design Policy PEOCL Design Policy Modify Modify
<designPolicy <designPolicy original object original object
name="GU| Access name="M essage oriented design oriented design
Control" ... Encrption” ...
CodePolicy-Aspect 1.1 Code Policy-Aspect 1.2 Java Java
ClientSideA ccessControl Encryption implementation implementation

Figure 20 Design for Security NFR

"Figure 20 Design for Security NFR" illustrate how security NFR is refined into four

NFRs, and then two of them are mapped into design policies (see sections 5.5.1and 5.5.2

102

for details), and then mapped to aspects (see section 5.6.1 and 5.6.2 for details). The other

two are mapped into traditional Java code and will not be further discussed in this thesis.

NFR 2
Performance

NFR 2.1
Time
efficiency

Design Policy 2.1
Messaging within 2 seconds

Design Policy 2.1.1
Raise alarm if one way messaging
exceed 1 second

PEOCL Design Policy
<designPolicy name="Message
Timing Policy" ...

Code Policy - Aspect 2.1.1
Timing

Figure 21 Design for Performance NFR

"Figure 21 Design for Performance NFR" illustrates how the performance NFR is refined

into time efficiency and space efficiency, only time efficiency is relevant in our case

103

study, so it is further mapped into design policies (see section 5.5.3 for details) and a

aspect (see section 5.6.3 for details).

NFR 3

Accounting

Design Policy 3.1
User feeis 1 cent per minute of login time

PEOCL Design Policy
<designPolicy
name="Accounting Policy"...

Code Policy - Aspect 3.1
Accounting

Figure 22 Design for Accounting NFR

"Figure 22 Design for Accounting NFR" illustrates how the accounting NFR is mapped
to adesign policy (see section 5.5.4 for details) and then to an aspect (see section 5.6.4

for details).

104

NFR 4
Maintainability

NFR 4.1
Tracing al method calls

Policy 4.1
Tracing al method calls

<designPolicy

PEOCL Design Policy:
name="MthodTracing" ...

Aspect 4.1
MethodTracing

Figure 23 Design for Logging NFR

The design level policies in the above diagrams have been formalized by using PEOCL,
and aspects have been all implemented in Aspectd. The next sections will present further

details.

5.5 Capturing NFR-Related Palicies by usng PEOCL

105

The following sections present how NFRs are refined and then mapped to design policies,
how the design policies are captured formally in PEOCL. All PEOCL expressions are

based onthe UML class diagrams presented in 5.1.4.

5.5.1 Access Control Policy for Security NFR

One of the Security NFRs is the access control NFR. We first refine it into finer
granularity policies, then formalize them by expressing them in PEOCL, which refer to

the previous UML classes diagrams.

GUI Access Control NFR
Each user shall be only allowed to access portions of GUI that he or she has permission

to access.

Refining GUI Access Control NFR — GUI Access Control Policy in natural language

P-a. If user's privilege-level is'admin’, then the user can access all GUI windows

P-b. If user's privilege-leve is'Gold', then the user can access al GUI windows and items
except user manegement window

P-c. If user's privilege-level is'Silver', then the user can access all GUI windows and
items except user management window and message encryption option.

P-d. If user's privilege-level is'Bronze, then the user can access all GUI windows and

items except these items: user management window, friend management window,

106

message encryption check box, friend-only option when sending messages.

Formalizing GUI Access Control Policy -- GUI Access Control Policy in PEOCL

The GUI Access Control Policy isacomposite policy, it consists of two sub design
policies. "Introducing loginRole", and "GUI Access Control Core Policy". It is necessary
to introduce a new attribute to the LoginDialog class, because LoginDiaog does not

concern about the concept of "role" before having this requirement of GUI Access

Control.

<designPolicy name="GUI Access Control Policy">
<category>Security</category>
<designPolicy>Introducing loginRole</designPolicy>
<designPolicy>GUI Access Control Core Policy</designPolicy>
</designPolicy>

<designPolicy name="Introducing loginRole">
<category>Security</category>
<target>L oginDial og</target>
<introduction> String loginRole; </introduction>
</designPolicy>

<designPolicy name="GUI Access Control Core Policy">
<category>Security</category>
<target>ChatroomClientWindow</target>
<invariant>
<ocl Expression>

self.loginDiaog.loginRole = "admin" implies

(self.menultemManageFriends.enabled = true and
self.menultemManageUsers.enabled = trueand
self.radioButtonSendToAll.enabled = true and
self.radioButtonSendToFriends.enabled = true and
self.checkBoxEncryption.enabled =trwe)

107

self.loginDialog.loginRole ="gold" implies

(self.menultemManageFriends.enabled = true and
self.menultemManageUsers.enabled =falseand
self.radioButtonSendToAll.enabled = true and
salf.radioButtonSendT oFriends.enabled = true and
self.checkBoxEncryption.enabled = true)

self.loginDiaog.loginRole = "silver" implies

(self.menultemManageFriends.enabled = true and
self.merultemManageUsers.enabled = false and
self.radioButtonSendToAll.enabled = true and
self.radioButtonSendT oFriends.enabled = true and
self.checkBoxEncryption.enabled =false)

self.loginDialog.loginRole = "bronze" implies

(self.menultemManageFriends.enabled =faseand
self.menultemManageUsers.enabled =faseand
self.radioButtonSendToAll.enabled = false and
self.radioButtonSendToFriends.enabled = false and
self.checkBoxEncryption.enabled =fadse)

</oclExpression>

<[invariant>
</designPolicy>

Note: When both the menu items "Send to all* and "Send to friends' are disabled, the
user does not have the GUI selections any more, the default behavior is "always send to

5.5.2 Message Encryption Policy for Security NFR

Another NFR for security is encryption. Encryption can be further divided into

“encrypted when stored” and “encrypted when transmitted”. The PEOCL representation

for “encrypted when transmitted” is presented below.

M essage Encryption NFR

The message shall be encrypted when transferred over the network.

108

M essage Encryption Policy in PEOCL

<designPolicy name="Message Encryption Policy" >
<category>Security</category>
<designPolicy name="Outgoing Message Encryption Policy"/>
<designPolicy name="Incoming Message Encryption Policy"/>
</designPolicy>

<designPolicy name="0utgoing Message Encryption Policy">
<category>Security</category>
<target> DataOutputStream::writeUTF(msg : String) </target>
<preCondition>
<oclExpression> encrypted (msg) </oclExpression>
</preCondition>
</designPolicy>

<designPolicy hame="Incoming Message Encryption Policy">
<category>Security</category>
<target> Datal nputStream::readUTHF() : return msg : String </target>
<postCondition>
<oclExpression> encrypted (msg) </oclExpression>
</postCondition>
</designPolicy>

Note: the word "encrypted" is in the ontology introduced by the NFR taxonomy.

5.5.3 Timing Policy for Performance NFR

Performance can be space-efficiency or time-efficiency. The following timing policy

addresses the time-efficiency aspect.

Design Palicy for Time-efficiency Performance NFR

One-way message must arrive within 1 second, i.e., the message sent from client to

109

server, or from server to client, must arrive within 1 second.

Timing Design Policy | n PEOCL

<designPolicy name="Message Timing Policy">
<category>Performance</category>
<target> DataOutputStream::readUTF (msg : String) </target>
<preCondition>
<oclExpression>
timeStamped (msg) and
(now - timelnMessage(msg) lessThan 1000 milliseconds)
</oclExpression>
</preCondition>
</designPolicy>

Note: the terms "timeStamped”, "now", and "timelnMessage" are from ontology of NFR
taxonomy.

5.5.4 Accounting Policy for Accounting NFR

Accounting NFR is typically considered later in the development stage (unlessit is
accounting software). And it is considered an overhead or burden, and that iswhy it is
considered a part of the NFRs, even though they are not necessarily a quality attribute as
defined in [Babacci95], but frequently it impacts many parts of the system in a scattered
fashion which makes the addition of the accounting NFR very difficult. We will show the

ease and modularity of implementing accounting NFR through PEOCL and Aspect.

Design Policy for Accounting NFR

User feeis 1 cent per minute for the total duration from login to logout.

110

Accounting Policy in PEOCL

<designPolicy name="Accounting Policy">
<category>A ccounting</category>
<designPolicy name="Record Login Time Policy"/>
<designPolicy name="Fee Calculation Policy"/>
</designPolicy>

<designPolicy name="Fee Calculation Policy">
<category>A ccounting</category>
<target>
ChatHandler.run()
</target>
<introduction>
loginTime Date;
accounts Vector;
userld String;
</introduction>
<postCondition>
<oclExpression>
self.accounts[self.userld] = (now - self.loginTime)/60* 1
</oclExpression>
</postCondition>
</designPolicy>

<designPolicy name="Record Login Time Policy">
<category>A ccounting</category>
<target>
ChatHandler.validateUserPassword (user : String, password : String)
</target>
<postCondition>
<oclExpression>
sdlf.loginTime = now and self.userld = user
</oclExpression>
</postCondition>
</designPolicy>

111

5.5.5 Logging Policy for Maintainability NFR

Logging is the another NFR that is typically lacking in many systems, because they are
not customer-facing features. It is not easy to enforce a systemwide logging policy. The
usually approach isto ask every developer to go through every module and manually add
logging statements. Thisis costly, difficult to change, and hard to ensure consistency and
completeness. We will show how it can be done in amodularized way so that it is easy to

do, easy to change, and easy to ensure consistency and completeness

L ogging Policy Tracing all method calls.

<designPolicy name="Trace All Method Calls Policy">
<category>Maintai nability</category>
<target>
UML.MetaMode.Core.Method::invoke()
</target>
<postCondition>
<oclExpression>
(log- log@pre) -> notEmpty
</oclExpression>
</postCondition>
</designPolicy>

5.6 Implementing NFR Policies By Using AspectJ

This section presents the implementation of the PEOCL policies for NFRs. The critical
parts of the code are presented*. The examples demonstrate how the “policy-based

programming” thinking helps the software development process. Y ou will see the de-

4 AspectJ release 1.0 rc2 and JDK 1.3.1_01 have been used to compile and execute all

112

coupling between the normal control flow and policy checking and enforcement, and the

centralization of otherwise scattered code.

5.6.1 Implementation for Access Control Policy

The following code is the access control aspect written in Aspectd. This aspect adds an
advice on the start of the ChatroomClientWindow to decide the permission level based on
the user’srole (or service level). For example, bronze users can just send and receive
message, they do not have access to features like encrypting outgoing message or sending

messages to friends only.

aspect ClientSi deAccessControl
{
poi nt cut startMai nW ndow(client. ChatroonClient Wndow win):
call (void client.ChatroonClientWndow. start()) && target (w n);

after(client.ChatroonClient Wndow wi n): startMai nWndoww n) {
clientSideAccessControl (win);
}

/1 client-side Rol e-Based Access Control (RBAC)
voi d clientSideAccessControl (client.ChatroonClientWndow w) {
if (client.LoginDi al og.getLogi nRol e().indexOf("adm n") >=0) {
w. get Menul t emvanageFri ends() . set Enabl ed(true);
w. get Menul t emvanageUser s() . set Enabl ed(true);
w. get Radi oButt onSendToAl | (). set Enabl ed(true);
w. get Radi oButt onSendToFri ends() . set Enabl ed(true);
w. get CheckBoxEncryption().set Enabl ed(true);
} else if (client.LoginDi al og.getlLoginRol e().indexCOr("gold") >= 0
) |
w. get Menul t emvanageFri ends() . set Enabl ed(true);
w. get Menul t emvanageUser s() . set Enabl ed(f al se);
w. get Radi oButt onSendToAl | (). set Enabl ed(true);
w. get Radi oButt onSendToFri ends() . set Enabl ed(true);
w. get CheckBoxEncryption().set Enabl ed(true);
} else if (client.LoginDial og.getlLoginRole().indexOf("silver")
>=0) {
w. get Menul t emvVanageFri ends() . set Enabl ed(true);
w. get Menul t emvanageUser s() . set Enabl ed(f al se);

AspectJ code

113

w. get Radi oButt onSendToAl | (). set Enabl ed(true);

w. get Radi oButt onSendToFri ends() . set Enabl ed(true);

w. get CheckBoxEncryption().set Enabl ed(fal se);

} else if (client.LoginDial og.getLogi nRol e().indexO("bronze")

>:O){

w. get Menul t emvanageFri ends() . set Enabl ed(f al se);

w. get Menul t emvanageUser s() . set Enabl ed(f al se);

w. get Radi oButt onSendToAl | (). set Enabl ed(f al se);

w. get Radi oButt onSendToFri ends() . set Enabl ed(f al se);

w. get CheckBoxEncryption().set Enabl ed(fal se);

5.6.2 Implementation for Encryption Policy

The implementation of encryption policy is done by SocketM essageEncryption aspect

written in AspectJ.

aspect Socket MessageEncrypti on extends Encryption {

public pointcut sendMsg(String msg):
call (void java.io.DataCutputStream witeUTF(String))
&& args(nsg)

public pointcut recvMsg():
call (String java.io. Datal nput Stream readUTF())

The SocketM essageEncryption aspect reuses the abstract aspect “Encryption”.

SocketM essageEncryption aspect specifies the wo pointcuts sendMsg and recvMsg to be
the calls to two socket operations writeUTF and readUTF from javaiio package. Every
message through the socket interface will be encrypted before sending and decrypted

after receiving, the encryption agorithm is BlowFsh.

114

5.6.3 Implementation for Timing Policy

The implementation of timing policy is done by the SocketMessageTiming aspect written

in AspectJ.

aspect Socket MessageTi mi ng extends Tim ng {

public pointcut sendMsg(String nsg):
call (void java.io.DataQutputStream witeUTF(String))
&& args(nsQ)

public pointcut recvMsg():
call (String java.io.Datal nput Stream readUTF())

public bool ean checkTimestanp (String ts) {
Date currentTine = new Date();

Systemout.println ("current time =" + currentTime);
long d = currentTinme.getTine() - timeSent.getTinme();
Systemout.println ("duration =" + d);

if (d>2){
Systemout.println ("warning: it took nore than 2 seconds
to receive the nessage");
return fal se;
}

return true;

The SocketM essageTiming aspect reuses the abstract aspect “Timing”. The
SocketM essageTiming aspect specifies the two pointcuts sendMsg and recvM sg to be the
calls to two socket operations writeUTF and readUTF from java.io package. And then

the SocketM essageTiming aspect overrides the method checkTimestamp() to check and

report a warning message if the duration is too long.

5.6.4 Implementation for Accounting Policy

115

Thisis the Accounting aspect written in Aspectd. Some of the details are explained after

the code.

aspect Accounting
{
/1 introductions
static Vector ChatHandl er.accounts = new Vector ();
String Chat Handl er.userld = "unknown";
Dat e Chat Handl er. | ogi nTi ne;

/1 The follow ng pointcut and advice perforns
/1 “accounts-initialization”
poi nt cut i nitChat Handl er (Chat Handl er h):
call (void ChatHandler.init()) && target (h) ;

voi d around(Chat Handl er h): initChatHanl der(h) {
proceed(h);
/* init accounts with <id,duration> */

}

/1 The follow ng pointcut and advi ce cal cul ates
/1 the login duration upon the
/'l disconnection of the session”
poi nt cut chat Handl er _run_excepti on(Chat Handl er h):
wi t hi n(Chat Handl er) &&
(withincode (void ChatHandler.run()) && target (h))
&& handl er (1 OExcepti on) ;

af t er (Chat Handl er h): chat Handl er _run_exception(h) {
Il ong duration = (new Date()).getTime() - h.loginTinme.getTinme();
h.bill(h.userld, duration);

/1 The follow ng pointcut and advice sets the user nanme and
/'l the start time of a session
poi nt cut chat Handl er _val i dat eUser Passwor d (Chat Handl er h,
String id, String passwd):
call (bool ean Chat Handl er. val i dat eUser Passwor d(
String, String)) &&
target (h) &&
args (id, passwd);

before (ChatHandler h, String id, String passwd)
chat Handl er _val i dat eUser Password(h, id, passwd) {
h.userld = id;

}

after (ChatHandler h, String id, String passwd)
chat Handl er _val i dat eUser Password(h, id, passwd) {
h.l ogi nTine = new Date();
}

/'l The Accounting algorithmis based on duration of the usage,

116

/1l the detail is omtted because it is not directly rel evant
void ChatHandler.bill (String id, long duration) {
/* accounts[userld] is incremented by the fee of this session */
/* which is 1 cent per minute for the el apsed tine
since loginTime */
accountguserld] += (now - loginTime)/60* 1;

This aspect adds these attributes into the class ChatHandler: accounts, userld, and

logingTime. Sometimes it is the natural thing to expand the existing classes to support a

NFR. AspectJ provides a language construct called “introduction” that allows us to add
extra members into an existing class without actually modifying the class. This helpsto
improve modularity by allowing clustering of functionality along different dimensions. It

also helps the nont invasive adaptation of existing modules.

The advice on the pointcut initChatHanlder performs additional initiaization for the

newly introduced data members.

The advice on the pointcut chatHandler_run_exception calcul ates the duration of this

session.

The advice on the pointcut chatHandler_validateUserPassword remembers the user id and

the start time of the current session.

5.6.5 Implementation for Logging Policy

117

The implementation of the logging policy is through reusing the generic abstract aspect
MethodTracing. All we need to do is to define a concrete pointcut “callMethods’ which
specifies all method calls shall be traced. This implementation is extremely simple, only
three lines of code. This simplicity is helped by the power of aspect and log4j. The code

for the aspect TraceAllMethods is listed below.

aspect TraceAl |l Met hods extends Met hodTraci ng {
/'l declare the pointcut of interest, i.e., all nmethod calls
public pointcut call Methods() : execution (* *.*(..));

5.6.6 Evolution of Communication Protocol

The chat room system uses an XM L-based text messaging format for the client and server

to exchange PDUs, an example of the PDU format is presented below.

Example PDU for “authentication request” message:

<PDU TYPE=AUTHENTICATION>
<USER>
<NAME> adam </NAME>
<ID> aaa </ID>
<PASSWD> xyz </[PASSWD>
<EMAIL> adam@carleton.ca </EMAIL>
</USER>
</PDU>

Some of our NFRs require the change of the communication protocol. The change to

communication protocol is usually deemed to be a huge architectural change in a

distributed system. It requires changes in both client and server. But with the help of

118

aspects, those changes have been made extremely simple and modular, without touching
existing Java code. Our implementation supported the new PDU formats by intercepting
every incoming and outgoing message on both client and server side (reference 5.6.2

Implementation for Encryption Policyand 5.6.3 Implementation for Timing Policy).

This is the rew PDU format after adding the timing aspect:

<PDU TYPE=AUTHENTICATION TIME=2001-10-08-10:05:02>
<USER>
<NAME> adam </NAME>
<|D> aaa </ID>
<PASSWD> xyz </[PASSWD>
<EMAIL> adam@carleton.ca </[EMAIL>
</USER>
</PDU>

5.7 Evaluation Of The Approach

One of the most important principles in software engineering is the separation of
concerns principle [Dijkstra76]. This principle states that a given problem involves
different kinds of concerns, which should be identified and separated to cope with
complexity and to achieve the required engineering quality factors such as adaptability,

maintainability, extendibility and reusability.

What we demonstrated in the previous sections are the separation of concerns on NFR's
design and implementation from Functional Requirements design and implementation.
Based on the separation of concerns principle, we argue that our proposed methodol ogy

helps to improve the maintainability, adaptability, extendibility and reusability of a

119

software system. The next section will further support this argument by comparing the

artifacts from the tradition approach and from the proposed approach.

5.7.1 Comparing The Traditional Approach And The Proposed Approach

By using the proposed methodology, we have observed the clean separation of concerns
in many ways in the previous sections. First the design and implementation artifacts for
NFRs are separated from those for FR. Second the design and implementation artifacts
for each NFR isin a separate module. All the benefits of the separation of concerns are

realized through the proposed methodol ogy.

Asavalidation to the Separation Of Concerns principle, we now compare the artifacts
from our proposed method (sections 5.5 and 5.6) against the artifacts from the traditional

object-oriented method (see below).

We used the traditional object-oriented methodology and developed some of the design

artifacts for the same NFRs. In particular, the sequence diagrams for three NFRs

(logging, timing, and encryption) are presented below.

120

Chat Client A logoer Chat Server.msgHandler
ChatClient Logger ChatHandler

logEntryStringvoid |

writeTosocket |

: K i

logExitiString)void

u g

oy Entry(String)wiaid

|
|
|
Ijj processing

IogExitiString)void |

"
- :

Figure 24 Sequence Diagram after adding logging NFR

"Figure 24 Sequence Diagram after adding logging NFR" specifies the need to log the
entrance and exit of methods. Notice that the traditional object-oriented method requires
that all the sequence diagrams (in section 5.1.5) need to be updated to support this simple
NFR. This design (and thus code) impacts the original design (and code) in a scattered

fashion.

121

Chat Client & logger performanceMonitor Chat Server.msgHandler
ChatClient Logoer Ferformanceionitar ChatHandler

logEntry{String) void

"t

addTirmeStampi(String): Strirly

:
:

wiiteTaSocket

.

logExitéString) void

logEntry{Stringvoid

L !

remaopeTimestampiString): String |

™ []

-
d

[T~

|
|:T|j processing

logE=tStringvoid |

i

(]
i
|
|
|
|
|
|
|
|
|
|
|
|
|
[

Figure 25 Sequence Diagram after adding timing NFR

"Figure 25 Sequence Diagram after adding timing NFR" specifies that a time stamp be
added before the message is sent and removed after the message is received. Again, al
the sequence diagrams need to be updated to reflect this new NFR. Also notice that the
logging NFR and timing NFR are separated at the requirement level, but mangled

together at the design level now. Following this design, the code will be mangled and

122

scattered as well.

"Figure 26 Sequence Diagram after adding encryption NFR" specifies that the message
shall be encrypted before sending and decrypted after receiving. With three relatively
simple NFRs, this sequence diagram has been modified three times and becomes more

and more complex with each addition of a new NFR.

Chat Chient A logger performanceMonitor encryptor Chat server.msgHandler
ChatClient Loager FPerformanceionitor Encryptor ChatHandler

[| |
| logEntryiStringvold |
42’&] |
addTimeStamp(Edno):String |
|
L | []

| encreptiString):String

wirite to socket

IngE}{it(String):vni%

o

logEntry(String)void

|
I
| decryptiString).String
I
remn\reTir11eStamp(String):81ring

Ijaq .

%l_———[——{———

logExit{Stringvoid processing

r
r

I

Figure 26 Sequence Diagram after adding encryption NFR

123

The design diagrams become more and more clumsy as we keep on modifying them with
the additions of new NFRs. The modification to the code is even worse. Let uslook at

two examples for illustration purpose.

In order to support logging NFR: "trace method call", every method in the entire system
has to be modified to add two statements at the beginning and at the end of the method
body. This approach makes the number of lines of code much bigger, and requires huge
amount of time, and is not very maintainable (every method needs modification if the
logging API is changed). Comparing the ssmple and elegant MethodTracing Aspect (see
section 5.6.5 and section 4.3.3.3) against modifying every method, the advartage of the

proposed method is huge.

In order to support security NFR: "encryption”, every call to the methods
java.io.DataOutputStream.writeUTF() and java.io.Datal nputStream.readUTF() must be
modified. We need to define two new methods (e.g., sendSocketM essage() and
recvSocketMessage()) first, and then replace every call to writeUTF() with
sendSocketM essage(), replace every call to readUTF() with recvSocketM essage(). The
implementation of sendSocketM essage and recvSocketM essage will handle the
encryption and decryption of messages. This is an intrusive modification to the existing

code and also design, it has scattered impact to the overall system.

The drawback of the traditional objectoriented method is that it does not have concepts

124

and mechanisms to crosscut its fundamental module -- object, while the design and

implementation of NFRs requires exactly that ability to manage the complexity.

The proposed methodology uses the crosscutting nature of policy mechanisms to help
manage the complexity, to achieve the separation between design and implementation
artifacts for NFRs and those for FRs, and also to achieve the separation between the

design and implementation artifacts for different NFRs.

A potentia limitation of the proposed approach is the need to have a different compiler
(i.e., Aspectd compiler instead of just Java compiler). If a particular project does not want
to introduce the uncertainty of a new compiler, then this approach can not be used, at

least not at the implementation phase.

125

CHAPTER 6 CONCLUSION

6.1 Summary

This thesis recognizes the problem that the changes of NFRs impact design and
implementation in a scattered fashion. Then based on the Separation of Concerns
principle, this thesis raises the question of how to modularize the design and

implementation artifacts for NFRs.

Our initial hypothesis is that there are mechanisms to modularize the design and
implementation artifacts for NFRs, and the fundamental nature of such mechanismsis
"crosscutting semantically while centralized syntactically”. We give aterm to al such

mechanisms; "Policy Mechanisms'.

Then we study the characteristics of policy mechanisms. A list of attributes of policy
mechanisms is provided. Each of the attributes is defined. All related policy mechanisms
are analyzed by using the attribute list. Based on this analysis, we extend OCL and form
PEOCL to represent design policies for NFRs, and use aspects (specifically AspectJ) to

represent implementation level policies for NFRs.

PEOCL extends OCL by adding the UML metamodel and the NFR ontology. The UML
metamodel provides us with the ability to reference a collection of model elementsin
UML class diagram. The NFR ontology makes it easy to express NFR-specific

constraints.

126

Overdl, PEOCL and AspectJ are suitable to represent design and implementation
artifacts for NFRs, because of their crosscutting ability and their association with the

main stream object-oriented methodology (i.e., UML and Java).

The case study has demonstrated how PEOCL can capture design policies for NFRs and
how AspectJ aspects can implement PEOCL policies. The case study has also
demonstrated the clean separation between the design and implementation artifacts for
NFRs and those for FRs, and the separation among the design and implementation

artifacts for different NFRs.

To sum up, this research work has done the following:
Identified the problem of how to design and implement NFRs in a modular way
Formally characterized policy mechanisms, and surveyed related policy
mechanisms
Extended OCL to form PEOCL
Proposed a methodology to derive design policies from NFRs, and then
implement design policies by using aspects
Conducted a case study through implementing a distributed chat room system by
using the proposed methodol ogy
Designed and implemented a generic abstract aspect library for common NFR

concerns

127

The benefit of the proposed methodology stems mainly from the fact that the design and
implementation for NFRs are separated from those for FRs. Separation of Concerns
improves maintainability (modularity, non-intrusive evolution, readability, etc.) greatly

[Dijkstra76], and thus helps to reduce the maintenance cost.

6.2 Future Work

The proposed methodology has some limitations and should be explored further in the

future.

In our case study, most of the NFRs can be implemented by using policies with little
effort, but some of them have not been implemented as policies. For example, al the GUI
creation code is implemented by using traditional method and plain Java code, because it
is simpler to modify the existing code to meet this new NFR and aso there are GUI-
generation tools readily available. It is not exactly clear to us what the general ruleis,
about when it is suitable to map NFRs to policies and when it is suitable to map NFRs to

direct- modifications to the existing code.

We also attempted to create a graphical notation for policies at design level. The basic

principle of designing atwo-dimensiona graphical notation is to use icons to represent

concepts, and then to use one of these three ways to represent relations between two

128

concepts. aline, or attachment, or containment between the two icons. However, the
crosscutting nature of policies makes it difficult to represent the relation between a policy
and all the modules (classes, methods, attributes, etc.) that it crosscuts. The resulting
diagram is too complicated to understand, even though the textual PEOCL and A spectJ
policies are modularized and very easy to understand. The potential solution could liein
tool automation, i.e., to provide tools that provide multi-dimensional views of the classes

and policies.

A chat room system is a norrtrivial application, but larger case studies still are required to
determine if this proposed methodology can reduce work, reduce the overall development
time and cost. Our expectation is that the larger the system is, the more beneficial this
methodology will be. Becawse the underlying features and modules that policies can
crosscut increase as the system becomes bigger, it will be more costly to do it the

traditional way (i.e., to modify them one by one), thus more savings are expected.

Larger case studies may aso revea any drawbacks in the proposed policy mechanisms
for designing and implementing NFRs, and invent better policy mechanisms, the
provided list of characteristics for policies could be useful to this work. For example, a
known limitation of AspectJ is that it lacks strong conflict detection and resolution
methods. Conflict resolution methods are typically required for specification level

artifacts, where al statement should hold true simultaneously. Procedural programming

129

language like Java or Aspect] does not address those issues at the language level. It is not

clear to us how to detect and resolve potentia conflicts among multiple related aspects.

The benefit of this approach has been argued based on the well-established software
engineering principle (i.e., the separations of concerns principle), and based on one case
study. Wide-scope trial should be conducted by many more different programmers of
different background and for different application domains. Statistics from the wide

scope trial should be analyzed to make a conclusive evaluation of the proposed approach.

The distinction between NonFunctional Requirements and functional requirements is not
aclear cut. This research work has been focusing on how to deal with NFRs at the design
and implementation levels. However the results from this research work can be
potentially applicable to functional features that crosscut many other functional features.

It would be interesting to see case studies in this area.

We aso would like to investigate in the future how this methodology impact the testing
phase. We expect that the tracability among requirements, design artifacts, code, and test

cases will be improved.

Traditionally development teams are organized surrounding features. Since NFRs

crosscut many functional features, NFRs are typically distributed into all the feature

130

teams, and a prime coordinates all the activities related to NFRs. This incurs much
additional overhead in communication and coordination among multiple teams. It would
be interesting to find out how this methodology can impact the organization structure,
e.g., whether it would be more effective to have a dedicated NFR team to implement all
NFRs, by using the proposed methodology. The challenge will be in the areas of how to
balance the power structure to ensure both the NFR team and the teams on functional

features are motivated and willing to communicate with each other.

131

CHAPTER 7 APPENDIX: NFR ONTOLOGY

Thisis alist of terms from NFR Ontology [Chung00b, Babacci95] that are used in our

case study. The signature of each term is presented.

Term from Signature of theterm as Descriptions

NFR Ontology | used in PEOCL

encrypted Boolean encrypted (String ‘encrypted is used as a predicate to
text); indicate whether the text is encrypted
or not.

timeStamped Boolean timeStamped(String | ‘timeStamped' is used as a predicate
text); to indicate whether the text has atime

stamp in it or not.

timelnMessage | Date timelnMessage(String 'timelnM essage' returns the date and

text); time encoded in the text.
now Date now; '‘Now' refers to the current date and
time.
Log Collection Log; 'Log' is a collection of logging
messages

132

CHAPTER 8 REFERENCES

[Ahmed97] Amal Ahmed, “R++ User Manual for Release 1.1”, AT&T. May 15,
1997
[AOPO1] ACM Communications of ACM, Vol44, issue 10, October 2001.

Specia issue on AOP

[AspectJ02] http://www.aspectj.org

[Babaccios] Mario Babacci, Mark H. Klein, Thomas A. Longstaff, Charles B.
Winstock, “Quality Attributes’, CMU Technical Report, Document
number: CMU/SEI-95-TR-021

[Barbuceanu98] Mihai Barbuceanu, Tom Gray, Serge Mankovski, "Coordinating with
obligations’, Proceedings of the second international conference on
Autonomous agents 1998, ACM Press, pp. 62 — 69, 1998

[BeardenO1] Mark Bearden, Sachin Garg, and Woei-jyh Lee, “Integrating Goal
Specification in Policy-Based Management”, Proceedings of Policy

2001, LNCS 1995, pp. 153-170, 2001

[BlowFish02] http://www.counterpane.com/bl owfish download.html

[Bolognesi00] Tommaso Bolognesi, "Toward Constraint- Object-Oriented
Development"”, IEEE Transon SE Val. 26, No. 7, July 2000

[Boutaba01] Raouf Boutaba, Andreas Polyrakis, “Towards Extensible Policy

Enforcement Points’, Proceedings of Policy 2001, LNCS 1995, pp.
247-261, 2001

133

[Chung00a]

[ChungO0b]

[Chung94]

[Clocksing7]

[Cole01]

[CorradiOl]

[Damianou01]

[Dijkstra76]

L. Chung, D. Gross, E. Yu, "Architectural Design to Meet Stakeholder

Requirements’, in Software Architecture, Patrick Donohue, ed.,
Kluwer Academic Publishers, pp. 545-564, 1999

L. Chung, B. Nixon, E. Yu, and J. Mylopoulos, “Non functional
requirements in software engineering”, Boston: Kluwer Academic
Publishers, 472 pp. ISBN 0-7923-8666-3, 2000

Lawrence Chung, Brian A. Nixon and Eric Yu , “Using Quality
Requirements To Systematically Develop Quality Software”, Fourth
International Conference on Software Quality, McLean, VA, U.SA.
October 3-5, 1994

W.F. Clocksin and C.S. Méllish, “Programming in Prolog”, Springer
Verlag, 1987 ISBN 0-387-17539-3

James Cole, John Derrick, Zoran Milosevic, Kerry Raymond, “Policies
in an Enterprise Specification”, Policy 2001, LNCS 1995, pp. 1-17,
2001

Antonio Corradi, naranker Dulay, Rebecca Montanari, Cesare
Stefanelli, “Policy-Driven Management of Agent Systems’, Policy
2001, LNCS 1995, pp. 214-229, 2001

Nicodemos Damianou, Naranker Dulay, Emil Lupu, Morris Sloman,
“The Ponder Policy Specification Language”, Policy 2001, LNCS

1995, pp. 18-38, 2001

Edgar W. Dijkstra. “A Discipline of Programming”, Prentice-Hall,
Englewood, N.J., 1976.

134

[DMTFSLAOZ]

[FUOL]

[GAMMA97]

[Gross00]

[Hitchens01]

[Java00]

[JLOGREF02]

[JLOGUSERO02]

[Kanada01]

[KazmanQ0]

The DMTF (Digrib uted Management Task Force) Service Level
Agreement (SLA) Working Group, http://www.dmitf.org/info/sla.html

Zhi Fu, S. Felix Wu, He Huang, Kung Loh, Fengming Gong, Ilia
Baldine, and Chong Xu, “IPSec/VPN Security Policy: Correctness,
Conflict Detection, and Resolution”, Policy 2001, LNCS1995, pp. 39-
56, 2001.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, "Design Patterns--
Elements of Reusable Object-Oriented Software”, Addison Welsley,
1997 (ISBN 0-201-63442-2)

Daniel Gross, Eric Yu, "From Non-Functional Requirements to Design
through Patterns’, Proceedings of the 5th Mitel workshop "Innovation
in Technology & Applications’, August 24th-25th, 2000

Michael Hitchens and Vijay Varadhargjan, “Tower: A Language for
Role Baesd Access Control”, Proceedings of Policy 2001, LNCS 1995,

pp. 88-106, 2001

Java Language Specification, Second Edition, 2000 Sun Microsystems,

Inc.

ILOG JRules Language Reference, version 3.0 (http://www.ilog.com/)

ILOG JRules User’s Manual, version 3.0

Y asus Kanada, “Taxonomy and Description of Policy Combination
Methods”, Proceedings of Policy 2001, LNCS 1995, pp. 171-184, 2001

Rick Kazman, Mark Klein, Paul Clements, “ATAM: Method for

135

[Kazman97]

[Litman97]

[Log4Jo2]

[Lutfiyya01]

[Martin98]

[OCL97]

[Oracle99]

[PIBOO]

Architecture Evaluation”, CMU/SEI-2000-TR-004

Rick Kazman, Mark Klein, Mario Barbacci, Tom Longstaff, Howard
Lipson, Jeomy Carriere, "The Architecture Tradeoff Analysis Method",
TR, SEI, Carnegie Mellon University, Pittsburgh, PA 15213

Dianne Litman, Peter F. Patel-Schneider, Anil Mishra, “Modeling
Dynamic Collections of Interdependent Objects Using Path-Based

Rules’, OOPSLA 1997

LogdJ: http://jakarta.apache.org

Hanan Lutfiyya, Gary Molenkamp, Michael Katchabaw, and Michael
Bauer, “Issues in Managing Soft QoS Requirements in Distributed
Systems Using a Policy-Based Framework”, Policy 2001, LNCS 1995,
pp. 185-201, 2001

James Martin, James J. Odell, “Object-oriented Methods — A
Foundation: A UML Edition”, Pentice Hall, 1998, ISBN 0-13-905597-5

“Object Constraint Language Specification”, version 1.1, 1997, ad/97-
08-08, Rational Software, Microsoft, HP, Oracle, IBM, etc. (The
document can be found within this link: http://www.rational.com/uml,

the exact link to the document is subject to change)

“Java Stored Procedure Developer’s Guide”, Oracle 8i, release 2
(8.1.6), December 1999.

Policy Information Base (PIB) for Differentiated Service QoS Internet

Draft, Network Working Group, "Differentiated Services Quality of
Service Policy Information Base", November 24, 2000 (

136

[RUPOO]

[Scott99)]

[Together02]

[UMLOO]

[UMLMeta97]

[Waldbusser00]

[Weiss01]

[XMLOO]

http://ring.htcn.ne.jp/pub/doc/internet-drafts/draft- i etf-diff serv-pib-

09.txt (therevision number is subject to change as newer revisions
coming out), conform to Section 10 of RFC2026)

Software Process Engineering Management -- The Unified Process
Model (UPM), Initial Submission, OMG document number ad/2000-
05-05, May 12, 2000, Submitted by IBM, Rational Software, Sof Team,
Unisys, Nihon Unisys Ltd., Alcatel, Q-Labs (ex-objectif technologies),
Supported by Valtech, Toshiba

Michael L. Scott, “Programming Language Pragmatics’, October 1999,
ISBN 1-55860-442-1

http://www.togethersoft.com/

“Unified Modeling Language Specification”, version 1.3, 2000,
Rational Software

UML Meta Model Specification, version 1.1, 1997, Rational Software

Steve Waldbusser, Jon Saperia, ThippannaHongal, Internet Draft

"Policy-Based Management MIB", Nov 22, 2000
(http://ring.htcn.ne.jp/pub/doc/internetdrafts/draft- i etf- snmpconf-pm-

04.txt, the revision number is subject to change)
Weiss, M., Araujo, I., "Patterns and Non-Functional Requirements: An
Interim Report”, Proceedings of MICON 2001, "Patterns and NFR

section”, 2001

Extensible Markup Language (XML) 1.0 (Second Edition), W3C
Recommendation, October 2000.

137

[XMLWriter02] XMLwriter release 1.21, http://XMLwriter.net/

138

